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Summary

Polynomial optimization problems, where a multivariate polynomial function is to be
minimized subject to polynomial inequality constraints, are ubiquitous in engineering,
and in particular in systems control. In general, these optimization are non-convex, and
hence typically difficult to solve numerically.

In this lecture we explain how convex optimization, and in particular semidefinite pro-
gramming, can be used to solve globally these non-convex optimization problems, with a
numerical certificate of global optimality.
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Souhrn

Czech(Polynomial optimization problems, where a multivariate polynomial function is to
be minimized subject to polynomial inequality constraints, are ubiquitous in engineering,
and in particular in systems control. In general, these optimization are non-convex, and
hence typically difficult to solve numerically.

In this lecture we explain how convex optimization, and in particular semidefinite pro-
gramming, can be used to solve globally these non-convex optimization problems, with a
numerical certificate of global optimality.)
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1 Introduction

Most analysis and design problems in robust and nonlinear control can be formulated as
global optimization problems with polynomial objective functions and constraints. Typ-
ical examples include robust stability analysis for characteristic polynomials with para-
metric uncertainty, simultaneous stabilization of linear systems, pole assignment by static
output feedback, and stability analysis for polynomial systems by Lyapunov’s second ap-
proach. In some specific cases, there exist computationally efficient techniques for solving
these problems. For example, vertex or extremal results such as Kharitonov’s Theorem or
the Edge Theorem can be used to perform robust stability analysis without optimization.
Similarly, static state-feedback design, or design of a controller of the same order as the
plant, can be formulated as a convex linear matrix inequality (LMI) optimization problem
[1], for which efficient interior-point methods are available [2].

Polynomial optimization problems arising from control problems are often highly non-
convex, with several local optima, and are difficult to solve. Although general purpose
global optimization algorithms can be applied, the computational cost is often an exponen-
tial function of the number of decision variables. To overcome the use of computationally
intensive algorithms, researchers have focused on the development of relaxation or simpli-
fication techniques relying on convex optimization. A convex relaxation of a non-convex
problem is obtained by removing non-convex constraints or replacing them with necessary
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(but generally not equivalent) convex constraints, hence simplifying and enlarging the set
over which the optimization is carried out. In the last decade, semidefinite program-
ming (SDP), or LMI optimization, has established itself as a popular convex relaxation
technique in the systems and control community.

Conservatism is the price one has to pay when simplifying a non-convex problem. For
example, convex sufficient stability conditions are frequently used instead of non-convex
necessary and sufficient stability conditions when performing robust design. Generally
speaking, there is a trade-off between the amount of conservatism and the computational
cost when solving a non-convex problem. Due to the amount of conservatism inherent
in LMI techniques, which is difficult to measure accurately for practical control problems
[2], there has recently been a surge of interest in approaches that gradually increase com-
putational complexity. Most of these approaches are based on sufficient conditions for the
positivity of multivariable polynomials. For example, positivity of polynomials is replaced
with the stronger sum of squares (SOS) constraint, which has an LMI formulation [5]. An
alternative approach based on the theory of moments has been developed independently
in [6].

For non-convex problems, the relaxation technique described in [6] enables the user to sys-
tematically construct an increasing sequence of convex LMI relaxations, whose optima are
guaranteed to converge monotonically to the global optimum of the original non-convex
global optimization problem. A Matlab implementation of the relaxation technique, called
GloptiPoly [3], has been developed as an open-source freeware based on the LMI solver
SeDuMi. Numerical experiments suggest that for most small- and medium-size problems
in the technical literature on global optimization, the global optimum is reached with
LMI relaxations of medium size, at a relatively low computational cost. Moreover, global
optimality can sometimes be proved by using sufficient rank conditions and numerical
linear algebra techniques.

The objective of this lecture is to describe the hierarchy of convex LMI relaxations for
non-convex polynomial optimization. We keep the technical level elementary, focusing
more on the main ideas than on the mathematical details. Two numerical examples are
presented to illustrate the LMI relaxations.

2 A hierarchy of convex relaxations

Consider the multivariate polynomial optimization problem

P : p∗ = minx g0(x),
s.t. gk(x) ≥ 0, k = 1, . . . ,m,

(1)

where gk ∈ R[x1, . . . , xn] are real-valued polynomials. Formulation (1) encompasses non-
convex quadratic problems as well as discrete optimization problems, such as 0-1 nonlinear
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programming problems. Denote by K the feasible set of P, that is,

K = {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m}. (2)

The idea behind the methodology in GloptiPoly is to construct a sequence of convex LMI
relaxations of P of increasing size and whose sequence of optimal values converges to the
global optimal value p∗ = inf P. The proof of convergence of the LMI relaxations is based
on recent results in real algebraic geometry concerning the representation of polynomials
that are strictly positive on a semi-algebraic set. It turns out that the primal and dual
LMI relaxations of GloptiPoly correspond to the dual theories of moments and positive
polynomials.

Indeed, while the primal relaxations aim at finding the moments of a probability measure
with mass concentrated on some global minimizers of P, the dual relaxations aim at
representing the polynomial g0(x)−p∗, which is positive on the semi-algebraic feasible set
K of P, as a linear combination of the gk(x) with SOS polynomial weights.

2.1 Primal relaxations

In brief, the primal LMI relaxations {Qi} of P are relaxations of the moment problem

p∗ = min
µ

∫
K

g0 dµ, (3)

which is equivalent to P, and where the unknown µ belongs to the Borel set of probability
measures supported on semialgebraic set K. For a multi-index α ∈ Nn, g0(x) =

∑
α(g0)αxα

is a polynomial of the monomials xα = xα1
1 · · ·xαn

n , and thus the objective function is a
finite linear combination

∑
α(g0)αyα of moments

yα =

∫
xαdµ

of the probability measure µ. The relaxations of (3) are obtained by replacing the con-
straint that µ has its support in K with progressively stronger semidefinite programming
conditions on its moments.

For instance, let 2vk − 1 or 2vk be the degree of the polynomial gk in the definition (2) of
the set K, and let v = maxk vk. Then, the relaxation of order i includes the constraints∫

f 2gk dµ ≥ 0, k = 1, . . . ,m, (4)

for all polynomials f ∈ R[x1, . . . , xn] of degree at most i − v. Inequalities (4) translate
into equivalent LMI constraints on the moments {yα} of µ of order |α| ≤ 2i. Of course,
the larger the order i, the larger the size of the associated LMI constraints.
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2.2 Dual relaxations

On the other hand, the LMI relaxations {Q∗
i } that are dual to {Qi} solve the optimization

problems
maxpi,{qk} pi

s.t. g0(x)− pi = q0 +
∑m

k=1 gk(x)qk(x)
(5)

where the unknowns {qk} are polynomials in x, all sums of squares. Both the number
of variables and the number of constraints in the relaxation Q∗

i depend on the maximum
degree 2i allowed in the right-hand-side of (5). The increasing numbers of variables and
constraints in the relaxations reflect that the degree 2i must be large enough in (5) for pi

to be as close as desired to p∗ (and often to be exactly equal to p∗).

We consider mild technical assumptions on the feasible set K, which are satisfied, for
example, when K is a polytope, or when the level set gk(x) ≥ 0 is compact for some index
k. Such assumptions can always be satisfied by enforcing a sufficiently large feasibility
radius on the decision variables, that is, by introducing the additional Euclidean norm
constraint ‖x‖2 ≤ R2 for sufficiently large R. Then it was proved in [6] that inf Qi

converges to inf P as i tends to infinity. In other words, letting p∗i denote the optimum
obtained by solving the LMI relaxation Qi of order i, we obtain a monotone sequence of
lower bounds p∗i converging asymptotically to the globally optimal value p∗ of the original
optimization problem in (1). This monotonicity means that the sequence is designed to
do better, or at least not worse, at each step. Moreover, our computational experiments
on global optimization benchmark examples reveal that in practice p∗i is very close to p∗

for relatively small values of i. In addition, in many cases the exact optimal value p∗ is
obtained at some particular relaxation Qi, that is, p∗ = p∗i for some relatively small i.

In our software GloptiPoly [3] we have implemented a numerical linear algebra algorithm
that detects global optimality, for example, to determine whether the LMI relaxation Qi

provides the optimal value p∗i = p∗, and another algorithm to extract global minimizers.
Roughly speaking, detecting global optimality amounts to checking successive ranks of
moment matrices, whereas global minimizer extraction amounts to computing a Cholesky
factor of the moment matrix and solving an eigenvalue problem. All of these tasks can
be carried out efficiently with standard algorithms of numerical linear algebra.

3 Examples

We now consider two examples of constructions of successive LMI relaxations. By em-
ulating these examples, the reader should be able to build up LMI relaxations for more
general polynomial optimization problems.
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3.1 First example

Consider the non-convex optimization problem

max x2

s.t. 3 + 2x2 − x2
1 − x2

2 ≥ 0
−x1 − x2 − x1x2 ≥ 0
1 + x1x2 ≥ 0

where the linear objective function x2 is maximized over a non-convex feasible set delim-
ited by circular and hyperbolic arcs. The feasible region is shown in Figure 1.

Figure 1: Feasible set for Example 1. The feasible set (shaded region) is non-convex and
delimited by circular and hyperbolic arcs.

The first LMI relaxation Q1 is

max y01

s.t.

 1 y10 y01

y10 y20 y11

y01 y11 y02

 � 0

3 + 2y01 − y20 − y02 ≥ 0
−y10 − y01 − y11 ≥ 0
1 + y11 ≥ 0

with optimal value p1 = 2. The notation � 0 stands for positive semidefinite. In this
relaxation, the 3 × 3 matrix is a moment matrix of order up to 2. Problem constraints
are linearized with the help of these moment variables.
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Figure 2: Feasible set of the first convex LMI relaxation for Example 1. The feasible set of
the first LMI relaxation (shaded region) is obtained by projecting the first-order moments
onto the plane. The optimum of the first LMI relaxation is attained at the upper vertex
(dot) of the feasible set. The optimum is an upper bound on the global optimum of the
original non-convex polynomial optimization problem.

In Figure 2 we show the projection of the feasibility set of LMI relaxation Q1 onto the
plane y10, y01 of first-order moments. This convex feasibility set inscribes the original
non-convex feasible set. We can see that the optimum of the LMI relaxation is achieved
at a point that is infeasible for the non-convex problem.
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The second LMI relaxation Q2 is

max y01

s.t.


1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 � 0,

 3 + 2y01 − y20 − y02 3y10 + 2y11 − y30 − y12 3y01 + 2y02 − y21 − y03

3y10 + 2y11 − y30 − y12 3y20 + 2y21 − y40 − y22 3y11 + 2y12 − y31 − y13

3y01 + 2y02 − y21 − y03 3y11 + 2y12 − y31 − y13 3y02 + 2y03 − y22 − y04

 � 0, −y10 − y01 − y11 −y20 − y11 − y21 −y11 − y02 − y12

−y20 − y11 − y21 −y30 − y21 − y31 −y21 − y12 − y22

−y11 − y02 − y12 −y21 − y12 − y22 −y12 − y03 − y13

 � 0, 1 + y11 y10 + y21 y01 + y12

y10 + y21 y20 + y31 y11 + y22

y01 + y12 y11 + y22 y02 + y13

 � 0

with optimal value p2 = 1.6180, which is the global optimum p∗ within numerical accuracy.
In addition, first order moments (y∗10, y

∗
01) = (−0.6180, 1.6180) provide an optimal solution

of the original problem. This problem features a 6 × 6 moment matrix corresponding to
moments of order up to 4. The three 3 × 3 LMI constraints are the LMI formulation of
(4).

In Figure 3 we show the projection of the feasibility set of the LMI relaxation Q2 onto
the plane y10, y01 of first-order moments. By construction, the feasibility set of the LMI
relaxation Q2 is included in the feasibility set of the LMI relaxation Q1. Compared
to Figure 3, we can see that the feasibility set of the LMI relaxation Q2 is exactly the
convex hull of the original non-convex feasible set, and the global optimum is now attained
because the objective function x2 is linear in the first-order moments.

3.2 Second Example

Consider the optimization problem

max x2
1 + x2

2

s.t. 3 + 2x2 − x2
1 − x2

2 ≥ 0
−x1 − x2 − x1x2 ≥ 0
−1− 4x2 − 4x1x2 ≥ 0

where the objective function ‖x‖2, the squared Euclidean norm of x, is maximized over
the non-connected set shown in Figure 4. This problem admits various local optima.
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Figure 3: Feasible set of the second convex LMI relaxation for Example 1. The feasible
set of the second LMI relaxation (shaded region) is obtained by projecting the first-order
moments onto the plane. The optimum of the second LMI relaxation is equal to the global
optimum (dot).

The first LMI relaxation Q1 given by

max y20 + y02

s.t.

 1 y10 y01

y10 y20 y11

y01 y11 y02

 � 0

3 + 2y01 − y20 − y02 ≥ 0
−y10 − y01 − y11 ≥ 0
−1− 4y02 − 4y11 ≥ 0

yields the global optimum p? = p1 = 8.3492 attained at (y∗10, y
∗
01) = (−1.0935, 2.6746).

The optimum is achieved on the boundary of the convex hull of the non-convex non-
connected feasible set.

If we now wish to minimize (instead of maximize) ‖x‖2, the first LMI relaxation yields
the global optimum p? = p1 = 0.059176 attained at (y∗10, y

∗
01) = (0.0535,−0.2372). From

Figure 4 we can see that the global optimum is not achieved on the boundary of the
convex hull of the feasible set.
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Figure 4: Feasible set for Example 2. The feasible set (shaded region) is non-convex and
non-connected, delimited by circular and hyperbolic arcs. Also represented are global
optima with minimum Euclidean norm (dot near the origin) and maximum Euclidean
norm (dot at the top).

4 Conclusion

With the help of two simple numerical examples, we have briefly surveyed the general LMI
relaxation methodology for polynomial optimization developed in [6] and implemented in
the Matlab freeware GloptiPoly [3]. In the context of global optimization, the technique
is original in the sense that it does not perform any problem splitting, and thus avoids
the combinatorial explosion typical of branch and bound schemes.

In particular, this software can help solve various non-convex robust control problems as
soon as they can be formulated as polynomial optimization problems. Conservatism can
be reduced at the cost of a limited amount of additional computation.
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