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Summary

During previous decades, chaotic systems has been subjedtdensive research, in particular,
using the methods of the automatic control theory. One optieninent problems here is the
so-called synchronization of two or more chaotic systemenkn case, when having two iden-
tical copies of the same chaotic system with practicallygémne initial conditions, thanks to
strong dependence on initial data, after some time themkehmay be very different. In such
a way, chaotic oscillations tends to be de-synchronizelissrsome synchronizing influence
is being imposed. Synchronization is usually achieved agdferring certain synchronizing
signal from one chaotic system into the other one. This siginauld have the least possible
dimension, preferable it should be a scalar time functios.afuitable theoretical framework
for synchronization appears to be the notion of the obsenievduced by automatic control
theory. Synchronized chaotic systems may be used for \&@sgecure encryption schemes. For
such a purpose, one of those synchronized chaotic systensedson the transmitter side to
encrypt the sensitive information while the other one isduse the receiver side to decrypt
it. In this case, the notion of the so-called secure syncdhabion is important. The secure
synchronization is the one which can be achieved only whemwkig some crucial system pa-
rameter information. Such an information may later serva ascure password. This lecture
will give brief overview of possible secure encryption/dgation methods based on synchro-
nized chaotic systems. Furthermore, it will define the abodecated secure synchronization
and it will introduce the special class of chaotic systernggether with its efficient parame-
trization enabling even the global exponential synchratan. Such a synchronization is based
on nonlinear transformations and subsequent observagrdeaving favorable error dynamics.
Moreover, its security may be investigated thanks to thetioeed parametrization as well.



Souhrn

Chaoticle sysémy jsou v posledh desetildth intenzivié zkounany i metodami teorie
automaticlkeho fizeri. Jedim z dilezitych probBmil je zde synchronizace dvoudj vice
chaotickch sysémil. Dokonce i tehdy, kd¥ se bude jednat o @vkopie €ha dynam-
ického systmu, kteé budou inicializo@ny ve stejg okantik z prakticky stejgch paatenich
podninek, budou sefislusné oscilace po wité dol& rozctazet v disledku zameho efektu
citivé zavislosti chaoticikch oscila¢ na paate&nich podmnkach. Synchronizace je proto
mozné dosahnout jedig plisobeim synchroniztigiho sigralu predavareho z jednoho syemu
do druleho. Vhodym teoretickm ramcem z oboru teoriézeri se proto jev pojem po-
zorovatele, kdy synchronizigj sigral budeme poviovat za néfery vystup prviiho sysému
a druly sysém bude asymptotigkn pozorovatelem prniho sysému na aklace zminérého
méfereho Wstupu. Dilezitym aspektem pro praktiékvywziti je, aby Wstup byl pokud mano
CO nejusi Cast stavu, negpe jednorozmarnym sigralem. V tomto pipac jsou pak synchro-
nizovare chaoticle osciktory vywitelné celouradousifrovadch metod. \echny tyto metody
maji spol&€né vywziti skrytych komponent stavu, ktemejsou veejné gredavany, asak mo-
hou byt na stra@ pfijemce zrekonstru@ny pomoc synchronizace. Je proto nasgade [
vSech &chto postupech jeldezitou vlastnodttzv. bezpénost synchronizace. Zjedndshré
feCeno, bezpé&na synchronizace je takéwsynchronizace, ktafje m@na jen gi pfesré znalosti
nékteého kicoveho parametru sysinu, ktey je pak vhodgm kandiitem na generarn hesel
prislusré Sifrovad metody. V &to gedréSce bude jednak paad str&ny prehled manych
Sifrovadch metod zalderych na synchronizovam chaosu, @e pak budou odvozenyhtee
konkrétri tfidy sysémll, ktee je ma@né bezpéné synchronizovat pomoaelinearri rekon-
strukce, zaldereé na metod nelinérrich transformaica raslede pfesre linearizaci chybo
dynamiky.
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1 Introduction

Beginning with [46], synchronization of chaotic systems has/ become a popular research
topic [1, 2, 8, 23, 27, 33, 47, 50, 51, 53], where, in particuldeas from control theory find a
natural practice. Along this line of research, it should beed that an even broader problem of
synchronization of nonlinear oscillations has already &dahg history with a great variety of
applications (see [6] for an informative survey).

The present lecture aims to discuss the full (or completagisionization problem, i.e.,
when all state trajectories of the synchronized systemaatiytasymptotically converge as
time goes to infinity. For partial synchronization, see [81] and the references cited therein.
The full synchronization problem is naturally close to theserver concept in control systems
theory [42], and have found various applications includimg secure communication problem
to be further discussed later on.

To start, it is worth pointing out that one may view syncheation as a specified version
of a general observer design problem, since the system tootay be freely selected by the
designer, which however should have the smallest possibiergion preferably using only
one scalar signal.

An important aspect of synchronization is its securityetast in synchronization has been
boosted mainly by its possible use for chaos-based secormaaication and encryption. The
chaotic system used on the transmitter side is for encrypktia message, which is then trans-
mitted through an open channel, and then another syncle@oapy of the same chaotic system
on the receiver side is used to decrypt it. Various encryptiecryption methods may be used
(see, e.g., [17] for an overview). A crucial property of ci@agystems is their sensitive depen-
dence on initial conditions, so that the asymptotic syneoization is inevitable for the scheme,
which is supposed to prevent messages from being read dhertgansmission process by any
intruder. Some initial values and/or parameters of the tha@mnsmitter system are used as
the “password” and it is believed that without their predisewledge an intruder would not
be easy or practically unable to read the hidden messagdbough this approach may not
be the best possible in theory, it has many merits for pralkciipplications where a trade-off
between security and commercial requirements (e.g., ecakicanvenience of operations) is
deemed necessary.

From the viewpoint of systems theory, it may seem obviousrtany robust and adaptive
control methods could be considered for possible attackthnagsecure communication and
encryption schemes. Unfortunately, this problem was lgriggored when synchronization-
based communication schemes were suggested in the pasttibufar, there is such a typical
case of using a general Lur'e system to synchronize itsickdrdopy (see, e.g., [2]), but as will
be seen here there is a simple way to practically synchraniaeepresentative Lur'e systems
with different nonlinearities, which implies that the uskelLair'e chaotic systems for secure
communication could be questionable.

In this lecture, the secure synchronization will be introglt and its relation to all known
secure encryption chaos based techniques will be discussetb so, description of these tech-
niques will be given as well. Further, a class of chaoticesyst will be suggested to overcome
the aforementioned drawbacks. More precisely, it will bevamthat for a large class of chaotic
systems the error in the knowledge of system parametersesngh unremovable synchroniza-
tion error of the same magnitude; this implies that a smabughh non-matching parameters
error will neverspoil the synchronization (i.e., the robustness in the lusergse) while a big
enough error willalwaysspoil it (i.e., the so-called anti-robustness to be defireddv).

This class of systems is the so-callgeheralized Lorenz systemtroduced in [10, 55] and
then extended and further studied in detail in [11]. The gairEed Lorenz system is a signifi-



cant generalization of the well-known classical Lorenzeiys leading to a natural unification
with the Chen system [9], which is a dual system of the Lorerstesy [54, 1, 56, 36]. In
[11], the canonical form of the generalized Lorenz systers developed to enable efficient
generation of a variety of chaotic oscillations. Based onexigp nonlinear transformation,
the present lecture will further develop the global expaiasynchronization scheme and then
it will discus its security against various known attackatthse adaptive and robust control
techniques. In such a way, a promising methodology for tlestsynchronization-based se-
cure communication, significantly improving most, if nok, @&xisting schemes of this kind, is
provided.

2 Secure encryption schemes based on chaotic systems

To motivate the mentioned problem of the secure synchrtaizaf chaotic systems, let us first
describe its most promising application. This applicai®the secure encryption of sensitive
information. Despite variety of possible schemes theremsroon feature which is the involve-
ment of two copies of the same chaotic systems that are nhygyailchronized. The necessity
of the synchronization follows from the well known propedfychaotic system being strongly
dependent of the choice of initial conditions (the famousttérfly wing effect”). Thanks to it,
two independent copies of the same chaotic system with alsamse initial condition would
present very different behavior after sufficiently longipdrof time. Therefore, a synchronizing
connection is needed between those two identical chaattess to keep their synchronization.

All secure encryption schemes are based on the propertyhigrat is one of those synchro-
nized chaotic systems on the transmitter side and the otieeon the receiver side. First of
them is used to encrypt while the other one to decrypt theitsensmformation. As a secure
password, the value of some vital parameter precisely aefithie particular chaotic system is
used. In other words, both the person sending the encrypésdage and the person receiving
it have at their disposal whole rich family of chaotic systeamd the knowledge of a secure
password enables them to choose precisely one of them.

Once having such a chaotic system, various scheme are [gosBibspite the strong rele-
vance of the discrete-value systems, there have been astéongpply cryptographical meth-
ods to continuous-value information. Early investigasiothat were mainly inspired by the
increasing research on chaotic systems can be found in [38,510, 25, 7, 4]. In these ap-
plications, autonomous chaotic systems were used as psandom number generators in
discrete-value implementations. Thereafter, the pidngeworks on chaos synchronization,
[52, 53, 56, 47, 50, 51, 55, 54, 46, 19], led to a new branch pfiegtions. Now, nonau-
tonomous chaotic systems with continuous-value signale weed to transmit information.
Several schemes have been developed which allow to tramsfe information signal into a
chaotic waveform on the encoder side and to extract therirdton signal from the transmitted
waveform on the decoder side. The most important among them a

e Chaotic Masking: The encoder consists of an autonomous chaotic system whiyset o
signal is added to the information signal. This sum is trattechover the channel. The
decoder uses the transmission signal to synchronize anadgpi chaotic system with
the encoder system. The reconstructed chaotic signal mssihietracted from the trans-
mission signal which finally reconstructs the informatiognsl. In order to guarantee
synchronization on the receiver side the information dignaa to be sufficiently small
with respect to the chaotic signal.

e Chaos Shift Keying (CSK): The encoder consists of two or more autonomous chaotic
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systems with different parameters. According to the discigformation signal one of
them is selected whose output signal is transmitted ovecdheel. In the decoder the
same number of chaotic systems tries to synchronize witin émeoder counterparts.
The parameters are adjusted in such a way that only one pasytechronize at a time.
Detecting this synchronization decodes the discrete nmédion.

e Chaotic Modulation or Inverse System: The encoder is a nonautonomous chaotic sys-
tem whose state is influenced by the information signal. Té@der synchronizes with
the encoder via reconstruction of its state using the trgssam signal. The information
signal is recovered by applying the inverse encoder omerat the reconstructed state
and the transmission signal.

e Anti-synchronization Chaos Shift Keying (ACSK): As already mentioned, the classi-
cal CSK was first proposed by [43, 18] and its basic idea is to@ndigital symbols
with chaotic basis signals. Therefore, switching of chmatodes provides quite sim-
ple configuration of the receiver. However, as noted alréadg4], the classical CSK
method needs during switching quite a long time for an estiaiplent of synchronization
between the transmitter and the receiver, therefore speddta transmission is rather
poor while amount of data to encrypt a single bit is really dwufys an alternative, ACSK
is proposed in [14, 16, 15]. Its chart is shown on Fig. 1, wherklic channel is used
to send encrypted messages while secure channel a secrebéenet key will consist
of informationt enabling to have full synchronization of transmitter anthbeceivers to

- > Self-
Chaos generator || Public P~ synchronization Error_ | Compare
channel o calculation M
subsystem “A rewrite
initial
A A "
cpndlpons
 J in failed |
subsystem
Self- Error and
L synchronization . decode
Select ke .| Secure | Subsystem “B’ calculation
y "| channel o

Figure 1. ACSK digital communications system with anti-dyronization-error-based demod-
ulator. Public channel is used to send encrypted messagkssghure channel a secret key.

reasonable extent. The synchronizing signal is feededbatb of them. After certain
time, one of them, say “B”, produces significantly bigger grvehat determines correct
binary value a$). At the end of the step, the state of oscillator ™B” is resethat of
“A”, thereby maintaining all the time synchronization upaaequired level. Then, next
bit may be handled in the same way.

All of these schemes have been investigated analyticatlyeaperimentally in continuous-
time as well as in discrete-time applications [59, 21, 44,38 45, 61, 35, 26].

1This may be initial condition, or random length of time pekiuring which we transmit synchronizing signal
from publicly known constant zero information signal.
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According to [17], the inverse-system approach [19] seent®etthe most suitable scheme
for continuous-value encryption because of its unresticignal structure. Furthermore, its
structure corresponds to conventional self-synchrogigtream ciphers [39, 49]. Nevertheless,
recent results on ACSK, [15, 16, 14], are promissing as well.

What qualifies chaos for encryption purposes? The intereshignapplication field is
mainly triggered by the obvious geometrical signal comipyeand the statistical signal prop-
erties which can be observed in nonlinear dynamical sysfat<i7, 60]. In this way, chaotic
signals can be thought of as the continuous-value equivafetiscrete-value pseudo-random
sequences which are discussed in conventional cryptograph

3 Synchronization as an observer design problem

As already noted, all mentioned encryption and decryptaremes are heavily dependent on
the possibility of secure synchronization.

The main purpose of this part is to introduce the securityyathlronization with respect to
adaptive and robust control schemes; therefore, for lyréwit discussion is limited to the static
case and the simplest version of the adaptive observer.

Consider the following nonlinear system with a (possibly nmkn) parameter vectqi
(“password” candidate):

= f(z,t,n), z€R" peR™ Q)

Definition 1 System (1) is said to achievestatic synchronizationf a solutionz(t), ¢t > t, if
there exists an auxiliary outpug,= h(z) € R?, p < n, such that with this output system (1) is
the following smooth asymptotic observer for the solutigh), ¢ > to:

z = f(Z,t,p) + o(h(x), h(Z),3,p1), 2,7 €R", peR™ 2)

The synchronization is said to laati-adaptive secunith respect to parametet, if there does
not exist any adaptive observer of the form (2) witk- fi, where

fi = (i hiz) — h(2),3,1), i€ R™

Moreover, the synchronization is said to bati-robust secur&vith respect to parametet,

if there exists a constarit” > 0 such that for anyz, iz from a given compact set and for any
solution of (1) withy = 7 and (2) withy, = fi, it holds thatlim, . ||z(t) —Z(t) |p~ > K (Z—7).
Thesecure synchronizatiaa defined to be one that is both anti-adaptive and anti-rbbasure.

Anti-robust security implies that big enough parametemmaich should cause big enough
synchronization error despite any observer used. To usshsynization for secure communi-
cation, both anti-robust and anti-adaptive security prioge are crucial for resisting potential
attacks. Obviously, they are very broadly defined here aedefbre somewhat difficult to
verify. As a matter of fact, it is believed that every praatig implementable secure code is
breakable, by an intruder having at his disposal sufficiamdant of time and computing power
[17]. Therefore, the security level is a matter of tradebztween the designers’ costs and the
customers’ requirements. Nevertheless, security arsalysiot the main concern of the present
paper.

Some terminology has to be introduced firStalar synchronizatiois the one that uses a
scalar auxiliary output for communicatioglobal synchronizatioensures the global conver-
gence of any observed trajectory with any initial obseoragrror, whileexponential synchro-
nizationensures exponential decay of synchronization errors.
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Certainly, it is undesirable if a synchronization schemenisvin to be vulnerable to simple
attacks. Some cases, where the synchronization schemk&save to be insecure are listed
and proved in [12]:

Proposition 1 Suppose that system (1) and its synchronizing outpuit have the form
T =A(Cx,t)x + p(Cx,t) + BO(Cx,t) [ ap(p) - ag(p) }T, y=h(x)=Cz, (3)

wherex € R", y € RP, u € R®, A(Cz,t) is an(n x n) matrix with uniformly Lipschitz entries,
Cis a (p x n) matrix, B is (n x k) matrix, and®(z) is a (k x k) symmetric matrix with
uniformly Lipschitz entries. Assume that there exist pasidefinite and symmetrig: x n)
matrix S, (n x p) matrix L, (k x p) matrix R, and a real numbef” > 0, such that for a given
uniformly bounded solution(t), t > ¢, of (3),

S(A(Cz(t),t) + LC) + (A(Cz(t) + LC)'S < Q <0, Yt >T, SB=C'R. (4)

Then, the system allows synchronizationc¢f), ¢ > t,, which is not anti-adaptive secure;
namely, it admits the following adaptive observer:

= A(Cx(t),t)z+ LC(Z — x) + ¢p(Cx,t) + B®(Cx,t)p
= ®(Cx,t)RC(x — %), pcR~

The above proposition provides a multi-output generabrasof the input-free version of The-
orem 5.3.2 in [37], as the condition (4) follows from the wietlown Kalman-Yacubovitch
Lemma. Moreover, applying the persistency of excitatiawperty (Lemma B.2.3 of [37]), one
easily has the following result.

)y R

Corollary 1 Anti-secure synchronization with password decoding. Sugposddition to the
conditions of Proposition 1, that there exist two positival reonstantsl’, K, such that along
the synchronized system trajectarfy) it holds for all > ¢, that

t+T
| @T(Ca(r), )BT BO(Ca(r),7) 2 Kl > 0.
t

Then,p(t) — p = [y (), ... ap(p)]" ast — cc.

If some of the parameteys € R* are used as the password, Proposition 1 gives an even
possibility to decoding it, which makes attack fairly easys worth noting that the persistency
of excitation property may actually hold, thanks to the walbwn properties of the chaos such
as its topological transitivity.

Proposition 2 Suppose that system (1) and its synchronizing output have the form

j::[xg e Tp ¢($,M)]T, h(x) = xq,

where¢(z, ) is Lipschitz,z is bounded, and: stays within a compact set. Then, the above
system allows synchronization that is not anti-robust secNiamely, the system

. T T

b= dy o A SlEp) | H[0 07 e 0] (21— ),
where g is some nominal value of the unknown parametehas the property that for any
e > 0, there exists @(¢) > 0, such thafim, .. ||z(t) — z(¢)|| < e.

As a matter of fact, the above proposition shows that theist sxstems, synchronizable using
the robust observer technique up to any level despite thedbknowledge of its parameters.
Such a system is therefore synchronizable, but not secamnelyherefore it is not convenient for
encryption purposes. This shows clearly that results o@jgesting certain secure encryption
scheme, are rather controversial and superficial.
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4 The generalized Lorenz system and its synchronization

Here, the specific class of chaotic systems will be introduged studied to show that the
above mentioned secure synchronization is achievables dlass of systems is the so-called
generalized Lorenz system defined as follows.

Definition 2 The following general nonlinear system of ordinary difféi@requations inR? is
called ageneralized Lorenz syste{@LS):

0
. |A 0 B _ | an a2
a:—[() As x+ T1T3 7A_[(l21 agg]’ (5)
T1T2
wherexr = [z, o w3]", A\3 € R, and A has eigenvalues;, \, € R, such that
—Xy > A > —A3 > 0. (6)

Moreover, the generalized Lorenz system is said tododrivial if it has at least one solution
that goes neither to zero nor to infinity nor to a limit cycle.

Motivation for studying this generalized Lorenz system haen thoroughly discussed in
[55, 11]. In patrticular, the inequality condition (6) on tegstem eigenvalues is now well
understood, in view of Shilnikov’s criterion (see, e.g.¢ct@n 3.2 of [58]). Since the eigenvalues
requirement (6) is the only one, the generalized Lorenzgysepresents a quite general class
of autonomous systems?. The following result, enabling efficient synthesis of dni@riety
of chaotic behaviors for GLS, has been obtained in [11]:

Theorem 1 For the nontrivial generalized Lorenz systél) — (6), there exists a nonsingular
linear change of coordinates, = Tz, which takeg5) into the followinggeneralized Lorenz

canonical form
A 00 0 0 -1
5=10 X 0 |z+cz|0 0 —1 ]z, (7)
0 0 X; 1 7 0

wherez = (21, 2, 23] T, ¢ = [1, —1,0] and parameter € (-1, co).

Synchronization of GLS is based on the following importasiit, which is a generalization
of the result of [52], as the latter is applicable only to aprspecial form of matrixA.

Theorem 2 Both nontrivial GLS (5) and its canonical form (7) are statpieralent to the fol-
lowing form:

dy (A + X)) + 12
o= —Adem — (A = Ae)mms — (1/2)(7 + L)y (8)
Aanz + K (7)n?
A 1) — 27 — 2\
Ki(r) = 3(7+1) T 2 (9)

2(A1 — A\2) ’

wheren = [n1,m2,13] ", which is referred to as thebserver canonical fornThe corresponding
smooth coordinate change and its inverse are

T4+ 1)(21 — 2)°
2
. [Aml tm mtm <T+1>m] | (11)
A1 — Ao A — Ao 2(A = X2)
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Theorem 3 Consider system (8-9) with the output and its uniformly bounded trajectory
n(t), t > to. Further, consider the following system having inpiitand state) = (1);, 72, 73) ' :

@ L 1 0 M+ — 1
%= l 0 0 |9+ ] —MA—1L |90+
0 0 M 0
0
{ —(M = A)niiis — (1/2)(7 + 1) (nf)? ] 7 (12)
Ky ()(ni")?

wherel, » < 0. For all ¢ > 0, assumen, (t) — n{*(t)| < e. Then, it holds exponentially in time
that

limy oo || (t) = A(t)]| < Ce,

for a constant”' > 0. In particular, forn* = 7, system (12) is a global exponential observer
for system (8)-(9).

Remark 1 One can easily see that the right-hand side of the obsen®rgdn be represented
in the form required by Definition 1, i.e., as a copy of theaysplus a synchronizing connection
term.

Remark 2 The generalized Lorenz system as well as the generalizechzasnonical form
were already used for chaos synchronization in [33], which haxeses linear coupling only.
As a consequence, a rigorous proof of the error convergencepaasible only in a very re-
stricted case wheny; < 0 (see (5)). Yet, for the chaotic Chen systeg,> 0. Notice that for
the case ofi; < 0, the synchronization problem is trivial and can be achiewetthe same way
as that for the Lorenz system (see [42]). On the contrarymhgority of chaotic behaviors are
presented witluy, > 0 (see [10]), so does the Chen system. For these common andtanpor
cases ofiy; > 0, in [33] an ad hoc requirement on the magnitude of the drivéignal was in-
troduced, which may only be checked experimentally for aipety given system. Although
Assertion 3 of [10] proves the boundedness of the GLS behtoridhe case ooy > 0, no
explicit theoretical estimates on the attractor size wevjated. The approach presented here
provides the global exponential convergence of the symiration error for any transmitter
behavior and for all values of the system parameters; tioegethis approach is very general.

The following proposition analyzes the influence of misrhaig the parameter, where
system (8)-(9) with chaotic behavior is considered.

Proposition 3 System (12), with, = 7", 7 = 74 and system (8)-(9) with = 7,,,,; satisfy the
following property: Fori = 1,2, 3 and for sufficiently small,,.: — 7/,

mt—xxj‘f]l(t) - /rh(t)’ S C;Lp(ll» l2)|Tmast - Tsl|7

where C;?(l1,1;) > 0, ¢ = 1,2, are some parameters converging to zerdlif2)(l; +

V13 +4ly) — —oo, while C57(14,1;) > 0 does not depend oh,. For all values ofi; 5, it
holds that a( )
=B = (s — ) + K (Tnast — ) (13)

where K is given in (9).
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Remark 3 A study similar to Proposition 3 may be carried out with redge®ther system pa-
rameters and biased output measurements. Anti-robustigecan also be obtained, thanks to
the special structure of the observer used, i.e., the thordmonent is detectable but unobserv-
able, which leads the third component of the error to be indepat of the gains, », evolving
as the chaotic signaj;, passes through a simple linear filter. This means that wrosghchro-
nized system creates a signal qualitatively similar to theexct one but no hint for the intruder
is provided. Moreover, Proposition 1 is not applicable tstgyn (8)-(9) since the last equality in
(4) together withC'™ = (1,0, 0) and S being nonsingular givesisnk B = 1. The latter property
does not provide enough freedom to incorporate all the infteeofr in (8)-(9). Notice also
that forn; = 0, there is a singularity preventing further transformingetbbserver canonical
form (8)-(9) into an observability form, where the latter bies the use of Proposition 2 or
Proposition 1 withB having rank equal to 1.

—16, A3 = —1 and7 = 0.5. From left to right: the transmitter oscillator and the rigee
oscillator; bottom: the first, second, and third error comgrus between them.

Clearly, the above properties do not provide a full scale a@usity for the suggested syn-
chronization, even in the rather simplified Definition 1. Néveless, they exclude a great deal
of possible cipher breaking schemes, thereby making thedIsS more attractive than most,
if not all, existing ones for secure encryption applicagon

Based on the facts described in the above remark, one may lftaribe following conjec-
ture.
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Conjecture 1 Generalized Lorenz system allows secure synchronization.

The generalized Lorenz system (GLS) has been used in [1615]4t0 implement the
ACSK method. In these works, a thorough investigation of dpe# synchronization and
de-synchronization was performed. Based on it, the gererhliorenz system provides exper-
imental algorithm that is able to provide realistic, thowgifi not optimal, way how to encrypt
digital data using continuous-time chaotic systems.

5 Conclusions

The aim of the present lecture was to demonstrate concepteo$dcure synchronization of
chaotic systems with application to secure encryption négiwe data. Despite numerous pos-
sible encryption schemes, all of them are based on the plitysib synchronize two chaotic
systems, moreover, such a synchronization should be blataauthorized persons only. The
particular class of chaotic systems enabling synchrooizdtas been then suggested and the
security of that synchronization was investigated. Théesgsn question, called as the general-
ized Lorenz system, appears to have a great potential todokimsarious encryption schemes.
As an example, the recent implementation of ACSK scheme baisdlde generalized Lorenz
system was mentioned.
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