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Abstract

It has been confirmed by many authors that specific fracture energy of concrete
determined by laboratory experiments is dependent on the shape and size of the
specimen because the local energy in the fracture proses zone is influenced by the
free surface of the specimen. As the crack propagates towards the back face of
the specimen shape of the fracture process zone changes which has a direct im-
pact on local fracture energy. In this paper the author presents original concept of
local fracture energy determination within a framework of effective crack model.
Effective crack is a virtual notch of depth ae in an ideally elastic sample which is
identically deformed as a real sample with the plastic zone. Local fracture energy
can be - within this model - determined using three-point-bend tests as a deriva-
tive of energy release rate with respect to effective crack length ae. As long as the
local fracture energy exhibits a plateau, size-independent fracture energy can be de-
termined. The main advantage of suggested method of size-independent specific
fracture energy determination is that it doesn’t depend on testing of many samples
of different shapes, sizes or notch to depth ratios.
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Abstrakt

Mnoha autory bylo prokázáno, že specifická lomová energie betonu určená la-
boratorními testy závisí na tvaru a velikosti vzorků, protože lokální lomová energie
je ovlivněna jejich volným povrchem. Při šíření trhliny směrem k opačnému konci
vzorku se mění tvar lomové procesní zóny, což má přímý dopad na lokální lo-
movou energii. V tomto článku je představen originální způsob určování lokální
lomové energie pomocí modelu efektivní trhliny. Efektivní trhlina (ae) představuje
myšlenou hloubku zářezu v dokonale elastickém vzorku, jehož tuhost je stejná
jako tuhost reálného vzorku s plastickou zónou. Lokální lomová energie může
být v rámci tohoto modelu určena pomocí tříbodového ohybu vzorků jako de-
rivace rychlosti uvolňování deformační energie podle délky efektivní trhliny ae.
Pokud lomová energie vynešená jako funkce efektivní trhliny vykazuje široké ma-
ximum (plató), lze z hodnoty tohoto plató určit lomovou energii nezávislou na
tvaru vzorku. Hlavní výhodou tohoto postupu je, že k určení lomové energie nezá-
vislé na tvaru a velikosti vzorků není zapotřebí provádět testy na vzorcích různých
velikostí resp. na vzorcích s různou hloubkou zářezu.
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1 Introduction

Strength, stiffness, fracture toughness, specific fracture energy and brittleness are fun-
damental fracture properties of concrete. Strength and stiffness are directly used for
the design and analysis of concrete structures under varied loading and environmental
conditions. Toughness, specific fracture energy and brittleness are mainly used for the
development of high-strength, high-performance concrete. Attempts have been made
on using these properties for the design and analysis of concrete structures. Tough-
ness and fracture energy commonly characterizes the capacity of a material to resist
deformation and fracture. Brittleness is commonly understood to be the tendency for a
structure to fracture abruptly before significant irreversible deformation occurs. Brittle-
ness depends not only on the materials but also on the size of components. This means
that design against brittleness is not only a pure material design but also an integrated
material and structure design. The advent of high-strength concrete has led to new,
cheap, high-performance structures, but in many cases led to big disappointments be-
cause the concrete has proved to be extremely brittle and unusable for load-carrying
structures. Design of such structures has also gone beyond the limits of the existing
concrete code even though the concept of brittleness has also been used to design the
new, ultra-strong, cement-based materials and assess failure mode of the components
made of these materials. The research on the concrete toughness and brittleness indeed
helps further understand cracking and failure of conventional concrete materials and
structures, helps to develop new extremely strong and ductile materials and achieve
better and more logical and holistic design. So far, the information about the concrete
toughness and brittleness is very limited and few parameters are used to assess this
property. The main problem with most parameters is that they are size-dependent and
parametres determined on small samples do not describe behaviour of large structures
properly. Therefore, one of the hottest topics in the field of fracture mechanics of qua-
sibrittle materials remains determination of corresponding size-independent material
properties applicable for structures of any size.

The specific fracture energy GF deter-

Figure 1: Three-point-bending test arrange-
ment. δ is displacement of the loading
point during bending (deflection of the
beam).

mined from three-point-bend tests is prob-
ably the most frequently used parame-
ter in fracture analysis of concrete struc-
tures. The fracture energy GF according
to the Rilem recommendation [10] is av-
erage specific energy obtained as a ra-
tio of total work of fracture and the frac-
ture area (i.e. cross-section of initially un-
cracked ligament).

For a specimen of depth W, thickness
B and initial notch depth a0 (see fig. 1),
the fracture energy is given by

GF =

∫

δmax

0 Pdδ + 1
2mgδmax

(W − a0) B
, (1)

where P is applied load, δ is displacement of the load point (see Fig. 5 for illustration of
the load-displacement curve), δmax is displacement of the load point at which applied
load reaches zero, m is mass of the specimen and g is acceleration due to gravity. It is
well known, however, that GF varies with sizes and shapes of test specimens. To avoid
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this variability in the specific fracture energy determination Rilem committee issued
guidelines for specimen sizes and test arrangement. The main drawback of the Rilem

recommendations, however, are quite enormous sizes of specimens.
Many researchers have tried to identify reasons for variability of GF with sizes of

specimens. Hu and Wittman [5] have addressed the possibility that specific fracture
energy may vary along the crack path as it propagates throughout a relatively thin
sample. Such local energy being a function of crack length a is denoted as gf(a) to dis-
tinguish it from the averaged GF (see Eq. 4). Model of Duan et al. [2] which addresses
this problem is based on an assumption that energy required for the crack propagation
depends also on the fracture-process-zone (FPZ) width w. The FPZ width is affected
by free boundary of the specimen and therefore local fracture energy gf is a function
of position of the crack tip in the specimen. Hu and Wittman [6] suggested bi-linear
fracture energy distribution along the crack tip path (see Fig. 2).

gf (a) =

{

G∞ a < W − al

G∞

(

1 − a−(W−al)
al

)

a ≥ W − al,
(2)

where G∞ is size independent fracture energy and al is ligament transition length.

Figure 2: Bi-linear model of gf (a) [6]

Substituting Eq. 2 into Eq. 4 they got

GF

( a0

W

)

=







G∞

(

1 − al
2W(W−a0)

)

W − a0 > al

G∞

(

1 − (W−a0)
2al

)

W − a0 ≤ al.
(3)

Fracture energy GF can be then determined using local energy concept as [3, 2]

GF =
1

(W − a0) B

∫ W

a0

gf (a) da. (4)

Two similar methods based on measurements of GF on samples with several (min-
imum two for bi-linear model) notch depth has been suggested for gf(a) determina-
tion [1, 3]. These methods assume that a notch with a depth a0 is equivalent to a crack
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with the same length. Model of a crack equivalent elastically to a notch with depth ae

has already been published by Nallathambi and Karihaloo [8] as the well known
effective crack model.

In this paper the concept of local fracture energy in viewpoint of the effective crack
model is further developed. Local fracture energy is by the author of this paper de-
termined as a derivative of energy release rate with respect to effective crack length ae

using entire records of load-displacement curves of three-point-bending tests of con-
crete beams. The size-independent fracture energy (denoted as G∞) can be determined
by this method as long as the local fracture energy exhibits a plateau.

2 Local fracture energy determination within effective

crack model

Rilem fracture energy concept was originally developed by Hilleborg [4] and was
based on Hilleborg’s fictitious crack model which ignores fracture process zone width.
Local fracture energy concept [5] expands this model as it accepts that fracture process
zone width w varies as the crack propagates through the specimen (as it is demon-
strated schematically by author of this paper on Fig. 3) and consequently accepts that

(a) Initial shape of the fracture process zone is tri-
angular.

(b) Width wFPZ is constant as soon as the fracture
process zone is fully developed.

(c) Fracture process zone reaches the specimen
backface finally.

Figure 3: Fracture process zone shape changes as the fracture propagates throughout
the sample and therefore energy required to its propagation changes (schematically -
bending of the beam is not shown).

experimentally determined value of GF changes with the specimen size and notch
depth.
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In the first approximation it is possible to suppose that energy g required for cre-
ating of a unit volume of the process zone is constant. Local energy gf can be than
expressed as a function of fracture process zone volume VFPZ as

gf =
g

B

dVFPZ

dae
.

Although the effective crack length ae was originally suggested to be evaluated at ul-
timate load Pu only [8] the same calculation procedure can be easily applied to any
value of load and displacement – see Fig. 5. For this purpose the author of this pa-
per developed a new straightforward method of effective crack length determination
which is described in section 4. Fracture process zone volume VFPZ can be in first
approximation according the Fig. 3 expressed as:

dVFPZ

dae
=







B wL(ae) wL < wFPZ (a)
B wFPZ wL > wFPZ and l < W (b)
B (wFPZ − wU(ae)) l > W (c),

(5)

where equations (a) – (c) are related to sub-figures (a) – (c) on Fig. 3 respectively, wL and
wU is fracture process zone width on lower (front-face) and upper (back-face) surfaces
of a beam, wFPZ is width of fully developed fracture process zone. This equations can
be further simplified on assumption that dw/dae = const.:

dVFPZ

dae
=















B
(

dwL
dae

ae + w01

)

(a)

B wFPZ (b)

B
(

w02 −
dwU
dae

ae

)

(c),

(6)

where derivatives dwL/dae, dwU/dae and also w01 and w02 are constant.

Figure 4: The distribution of fracture energy gf along the notched beam of depth W
and notch depth a0.

Finally (introducing another symbols meaning of which is obvious from Fig. 4)
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fracture energy gf can be expressed as a trilinear function of effective crack length as:

gf (ae) =











G∞−G0
at

(ae − a0) + G0 ae < at + a0

G∞ at + a0 < ae < W − al

G∞ − (ae − W + al)
G∞

al
ae > W − al

(7)

3 Experimental determination of the local fracture en-

ergy

Crack development is always driven by energy released by the specimen. The so called
energy release rate G can be determined by differentiation of potential energy of exter-
nal and elastic forces with respect to effective crack length:

G = −
1

B

dΠ

dae
= −

1

B

(

d(Πe + ΠP)

dae

)

. (8)

ΠP = −
∫

δ

0 P(x)dx is potential energy of external forces and Πe = 1
2 P(δ) · δ is

potential energy of elastic forces. Under quasi-static conditions of loading the local
fracture energy gf is equal to energy release rate:

Figure 5: Load-displacement curve and the effective crack length ae determined by
Eq. 12 for arbitrary value of a load point displacement δ (left). Potential energy of
external and elastic forces Π as a function of displacement of the load point δ. Nor-
malized to initial ligament cross-section B(W − a0) (right).

gf(ae) =
1

B

d
(

∫

δ

0 P(x)dx − 1
2 P(δ) · δ

)

dae
. (9)

Eq. 9 can be solved using two different methods:

1. Integral in Eq. 9 is evaluated numerically and than derivation with respect to ae

is performed (numerically, too).
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2. Integral in the Eq. 9 is performed numerically and fitted by any suitable mathe-
matical function of ae using the least square method. The fitted curve is derived
with respect to ae analytically. This method should be preferred as it allows to
avoid cumbersome numerical derivation. As a suitable expression for fitting may
be chosen integrated Eq. 7 i.e. Π(ae) =

∫ ae

0 gf (a) da:

Π(ae) =











G∞−G0
2at

(ae − a0)
2 + G0ae + c1 ae < at + a0

G∞ae + c2 at + a0 < ae < W − al

G∞ae − (ae − W + al)
2 G∞

2al
+ c3 ae > W − al,

(10)

where constants c1, c2 and c3 should ensure that curves are connected. Example
of fitting of this kind as well as fitting using polynomial function is presented on
Fig. 6.

Figure 6: Potential energy of external and elastic forces Π fitted by tri-linear function
10 as a function of effective crack prolongation ∆ae = ae − a0.

Results of all above mentioned methods are presented on Fig. 7. It can be seen that
different methods give similar results exhibiting reasonable plateau between ascending
and descending branches which can be interpreted as an experimental prove of Eq. 7.
If there were no plateau observable the ligament width would not be sufficient for
size-independent fracture energy G∞ determination.

As soon as effective crack reaches the specimen back-face (∆ae → W − a0), polyno-
mial as well as direct derivative methods fail. Reason for this is obvious: accuracy of
determination of effective crack length is much worse in this region.
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Figure 7: Local specific fracture energy g f determined by two different numerical meth-
ods. The plateau height is the size independent fracture energy G∞.

4 Determination of the effective crack length

Several different methods of effective crack length determination has been published [7,
11]. Implicit equation of Stibor was proved by FEM studies as the most accurate:

E =
1

B

{

P

4δ

(

S

W

)3
[

1 − 0.387
W

S
+ 12.13

(

W

S

)2,5
]

+
9

2

P

δ

(

S

W

)2

F1 (αe)

}

, (11)

where αe = ae/W is relative crack length, S is span of the beam, E is modulus of elas-
ticity, F1 (αe) =

∫

αe

0 xY2 (x) dx, and Y is function of geometry according to Pastor [9],
which is suitable for any sample geometry:

Y (α) = Y∞ (α) + 4
W

S
(Y4 (α) − Y∞ (α)) ,

where

Y4 (α) =
1.9 − α

[

−0.089 + 0.603 (1 − α) − 0.441 (1 − α)2 + 1.223 (1 − α)3
]

(1 + 2α) (1 − α)3/2

and

Y∞ (α) =
1.989− α (1 − α)

[

0.448− 0.458 (1 − α) + 1.226 (1 − α)2
]

(1 + 2α) (1 − α)3/2
.

Relative crack length αe is normally evaluated numerically as a root of implicit Eq. 11,
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but it can be expressed approximately in explicit way, too

αe (F1) =
1

2
+

arctan(b1 + b2 ln F1 + b3(ln F1)
2 + b4(ln F1)

3)

π
, where

b1 = 0.2872 + 0.2091
W

S
,

b2 = 0.5268 − 0.0067
W

S
, (12)

b3 = 0.0381 + 0.017
W

S
,

b4 = 0.0284 − 0.002
W

S
,

and the function

F1 =
2B

9

(

W

S

)2
(

Eδ

P
−

1

4B

(

S

W

)3
(

1 − 0.387
W

S
+ 12.13

(

W

S

)2,5
))

,

has been determined using Eq. 11.
This formula is valid for width to span ratio W/S within an interval (0.1, 1) with

accuracy better than 0.7%. Modulus of elasticity E is obtained from three point bending
tests by means of formula 11 using initial slope of l-d curves for P/δ ratio and initial
notch depth to depth-of-specimen ratio (a0/W) for α.

Figure 8: Function 12 and its error. Exact values are plotted as points and the function
is the full line. Doted line is difference between exact value and the function 12.

5 Experimental

A set of ordinary concrete samples made of Portland cement was investigated by sug-
gested method. Samples were exposed to elevated temperatures up to 1000°C in age of
180 days. Three point bend testing was carried out using close-loop testing machine.
Three samples were used for every temperature. All samples were of uniform sizes i.e.
B =100 mm, W =100 mm, beam span S = 300mm, length of samples L =400 mm and
initial notch depth a0 = 25 mm (see figure 1).

G∞ experimentally determined using suggested method is presented on Fig. 10 and
compared with fracture energy GF calculated according to Rilem formula 1. Relative
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Figure 9: Modulus of elasticity obtained from three point bending tests by means of
formula 11 when initial slope is substituted for P/δ and a0/W for α. Error bars is 50%
probable error ∆50.

values of G∞/GF behave as expected i.e. remain in reasonably narrow range of values
being always higher than one.

Figure 10: Size independent fracture energy G∞ and its relation to GF determined
according to Rilem (Eq. 1).
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