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Summary

Realistic approaches to large scale object recognition, i.e. for detection and localisation
of hundreds or more objects, must support sub-linear time indexing. In the paper, we
propose a method capable of recognising one of N objects in log(N) time.

The ”visual memory” is organised as a binary decision tree that is built to minimise
average time to decision. Leaves of the tree represent a few local patches, and each non-
terminal node is associated with a ’weak classifier’. In the recognition phase, a single
invariant measurement on a query patch decides in which subtree a corresponding patch
is sought.

The method possesses all the strengths of local affine region methods — robustness to
background clutter, occlusion, and large changes of viewpoints. We show that it supports
near real-time recognition of hundreds of objects with state-of-the-art recognition rates.
After the test image is processed (in a second on a current PCs), the recognition via
indexing into the visual memory requires milliseconds. making.



Souhrn

Metody, které si kladou za cil vizualni rozpoznavani velkych soubori objekti, t.j. metody
pro detekci a lokalizaci stovek a vice objektti, se neobejdou bez indexace, ktera podporuje
vyhledavani v sub-linedrnim case. V prednasce popisujeme metodu schopnou rozpoznat
jeden z N objektt v ¢ase imérném log(N).

"Vizuélni pamét” je organizovana jako binarni rozhodovaci strom, ktery je vystavén
tak, ze se minimalizuje stfedni doba rozhodnuti. Listy stromu obsahuji maly pocet vytezi
z obrazkl. Kazdy neterminalni uzel obsahuje rozhodovaci pravidlo tiidici vyTezy jasové a
geometricky normalizované metodou lokalnich afinnich ramc.

Navrzena metoda rychlého vyhledavani objekti si zachovava vsechny vyhodné vlast-
nosti metod zalozenych na afinnich ramcich - robustnost vii¢i zakrytu, zméné na pozadi,
zméné thlu pohledu a zméné osvétleni. Experimenty ukazuji, Zze metoda dosahuje na stan-
dardnich testovacich problémech vysledki, které jsou lepsi, nez nejlepsi publikované. Na
PC s 2GHz procesorem trva zpracovani vstupniho obrazku velikosti 640x480 asi jednu
sekundu. Cas indexace je zanedbatelny, vyzaduje desitky milisekund.
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1 Introduction

In recent years, research in object recognition has progressed rapidly. Methods based on
correspondences of invariantly detected regions have achieved robustness to background
clutter, occlusion, and large changes of viewpoint. Impressive results, albeit for certain
classes of objects, have been reported [11, 3, 5].

Realistic approaches to recognition, detection and localisation of objects from large
collections must support sub-linear indexing, i.e. the ability to associate current visual
input with objects represented in the memory, at a speed that does not significantly de-
pend on the number of images and objects already seen. Any technique that compares
the current visual input one-by-one with stored models is linear in the number of known
objects. Such recognition techniques, solving effectively a sequence of two-image matching
problems, will have, sooner or later, an unacceptable response time. Searching and inde-
xing are well-studied subjects, and two sub-linear methods dominate the field — hashing
and tree search. This paper presents an approach that achieves sub-linear, real-time recall
by representing the visual memory as a binary decision tree organised to minimise average
time to decision.

The novel features of the proposed method, and the method itself, is easier explai-
ned if the reader is familiar with the state-of-the-art approach of D. Lowe [5]. In Lowe’s
recognition method, processing of an image starts by extracting square patches invari-
ant to similarity transformations. Next, each patch is described by the SIFT feature — a
128-dimensional vector consisting of sixteen eight-bin weighted histograms of gradient ori-
entations. In the training stage, SIF'T descriptors from all training images are organised in
a kD-tree. Correspondence between patches from the training images and a query image
are established as follows. First, SIF'T descriptors are computed on the query image. For
each SIFT, the kD-tree returns one stored patch if the tree contains a descriptor that is
significantly closer to the queried descriptor than other stored descriptors, else no match
is reported. The matched pairs of the query and kD-tree patches form tentative corre-
spondences, which are confirmed or rejected in subsequent verification and consistency
checks (these are not relevant for this paper). Lowe’s method can be summarised as: (i)
detect local coordinate frames in an invariant manner, (ii) represent them by a fix-sized
feature vectors, (iii) search efficiently for nearest neighbours of the vectors and (iv) find
geometrically consistent groups of correspondences of local coordinate frames.

—
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Figure 1: An example of features stored in the visual memory.

The first step of the proposed LAF-TREE method is in principle the same as in Lowe’s
approach. We chose a different type of distinguished regions (transformation covariant
regions) — the maximally stable extremal regions (MSERs, [6]), but any affine (scale)
invariant processes could be used!. A formal definition of a distinguisehd region is:

IExecutables of a number of covariant region detectors (including MSERs) are available on the web



Definition 1 Distinguished region. Let image I be a mapping [ : D C Z*> — S. Let
P C ZD, i.e. P is a subset of the power set (set of all subsets) of D. Let A C P x P
be an adjacency relation on P and let f : P — T be any function defined on P with a
totally ordered range T. A region Q € P s distinguished with respect to function f iff

f(Q) > f(Q),V(Q. Q) € A

The LAF-TREE method establishes local affine frames (LAFs) by constructions de-
scribed in [8]. The structure of the method is visualised in Fig. ?? and summarised in
Algorithm 1:

Algorithm 1: Structure of the proposed MSER-LAF method

1. For every database and query image, compute affine-covariant regions of data-
dependent shape.

2. Construct local affine frames (LAFs) on the regions using several affine-covariant
constructions.

3. Generate intensity representations of local image patches normalised according to
the local affine frames. Photometrically normalise the patches.

4. Establish tentative correspondences between frames of query and database images.
Compute similarity between the patches, select most similar pairs.

5. Find a globally consistent subset of the correspondences. Infer the presence and
location of the objects.

but this is a superficial difference - different detectors and frame constructions can be
easily combined or replaced. The novelty of the LAF-TREE approach is in the departure,
in Step (ii), from the ”compute a fixed-size feature vector on a fixed measurement region”
paradigm. In this paradigm, the local reference frame is described by a function of pixel
values from a measurement region whose size and shape, if expressed in the local frame
coordinates, is fixed. In Lowe’s approach, the shape is a square of a predefined size. It
is clear that a fixed measurement region will lead to difficulties when recognising certain
classes of objects, e.g. "wire-like” objects as bicycles where any square neighbourhood
includes background. Perhaps more significantly, a measurement region of a certain size
will be too big for some frames, e.g. including parts of background or discontinuities, and
yet it will be too small for other frames whose descriptors will not be discriminative.

The problem of a better-than-fixed measurement region seems insurmountable. How
can possibly be the measurement region adapted unless we know what we are looking at?
We finesse the problem by interleaving the processes of recognising the frame and deciding
where to measure next. The frame is recognised by descending a decision-measurement
tree where each decision not only reduces the number of potential corresponding frames
represented in the tree but also defines which measurements are taken next. More precisely,
a binary tree is formed in the learning stage. For each non-terminal node, a binary valued
measurement-decision function, called a 'weak classifier’, is selected from a large pool
according to an optimisation criterion. The criterion is a lower bound on the expected

at http://www.robots.ox.ac.uk/"vgg/research/affine



time to decision. The term 'weak classifier’ stresses the obvious analogies with discrete
AdaBoost - it is selected by a greedy algorithm, it could be any binary function of pixel
values and, as will be shown later, it is not required to make unequivocal decisions.

Establishing tentative correspondences with the decision-measurement tree has a num-
ber of favourable properties. The advantages of a data-specific measurement region have
already been mentioned. From a computational point of view, efficiency of recognition is
increased since only a small fraction of potential measurements is evaluated. In case that
a measurement is close to a decision boundary, or not available at all as in the case when
it is taken from the background, robustness of the search is easily achieved by inserting
the training frame in both subtrees. With this modification, the search in the recognition
stage descend always into only a single branch, guaranteeing that a leaf of the tree is re-
ached in log(N) steps, where N is the number of frame instances stored in the tree. Last
but not least, the learning process explicitly takes into account geometric uncertainty and
image statistics to minimise the response time (see Section 2). The final recognition Step
(iv), verification of the presence of objects by finding geometrically consistent groups of
correspondences, is not time-critical, since the number of tentative matches per frame is
small. It can be implemented by RANSAC or a voting scheme.

1.1 Related work.

Our work on decision trees was inspired by Lepetit and Fua [3], who were the first to intro-
duce decision trees for the recall of local image representation. Their approach, however,
differs from ours in several areas. First, they set the tree size (and the number of trees,
since they are using multiple randomised trees) by hand, while in our approach the tree
size is a function of image database content. Next, our measurements are invariant to
affine deformations of the image (thanks to the LAF constructions), we thus do not need
a 3D model or synthetically warped 2D images to capture the appearance variations. We
also explicitly consider image noise and background segmentation of the measurements,
while Lepetit et al. synthetically generate noisy patches and patches with random bac-
kground. We present experiments on datasets containing hundreds of objects, while the
results of Lepetit’s (and also of Lowe’s) work are demonstrated on only a few objects.
The Video Google system by Sivic and Zisserman [11] is able of indexing of a full-length
movie. A clustering of descriptors of local features is employed to reduce the recall time
complexity by a constant factor. But the processing time is not really an issue, since
everything is precomputed off-line, and the system is closed, i.e. the object queries must
originate from images from the movie. The work by Nene and Nayar [7] supports real-time
recognition using a space slicing search, but it is restricted to segmented objects. Neither
object occlusion, cluttered background nor multiple objects in scene are supported.

The rest of the paper is structured as follows. Section 2 details the proposed decision-
measurement tree structure. In Section 3, we experimentally show that the method sup-
ports near real-time recognition of hundreds of objects with state-of-the-art recognition
rates. Section 4 concludes the paper.

2 Recognition with Decision-Measurement Trees

This section describes the decision-measurement tree which is used to represent the ”vi-
sual memory”. Generally, a decision tree is a tree structure where a simple test (a weak
classifier) that splits the observation space is assigned to each non-terminal node. Each



leaf corresponds to a volume that is defined by the sequence of decisions made on the path
from the tree root to that particular leaf. During the recall phase, the tree is traversed
according to the decisions at non-terminal nodes, until a leaf node (and a corresponding
volume) is reached. The elements in the reached volume do not necessarily match the query
— being in the same volume does not imply proximity — and an additional evaluation of a
similarity measure is necessary to distinguish matching and non-matching elements. Re-
call can be viewed as a sequential reduction of the set of candidate correspondences until
a subset of a small predefined cardinality (called ’leaf capacity’) is reached. The elements
remaining in the subset are sequentially searched for matches.

Although we currently employ only one simple type of classifiers, multiple types can be
freely combined within the tree. Our classifiers are binary functions dge, : A — {L, R},
which threshold a single pixel value. X is a vector specifying the measurement location, ©x
is a scalar threshold on value at X, A is a local affine frame, and {L, R} are the decisions
to search Left and Right subtrees respectively.

Due to image noise, the decisions are ambiguous for values close to the thresholds Ox%.
The ambiguity can be solved in the recognition phase by descending both subtrees, as
e.g. in the classical kD-tree algorithm. In an alternative approach, the elements are in
ambiguous cases stored redundantly in both subtrees. There is then no need to backtrack
or split the tree search during recognition (recall), all uncertainties are solved in the
training phase. This approach allows for faster retrieval at the expense of memory needed
for the redundant representation. Since our motivation is to achieve high recognition
speeds, we have adopted the second approach. The design leads to a straightforward
retrieval algorithm (see Algorithm 1). The retrieval is very fast since for each query frame
A only one evaluation of a weak classifier (thresholding of a single pixel value) is performed
at each tree level. The depth of the tree is typically 15 to 25, depending on the database
size.

2.1 Learning of the tree

(Algorithm 2). A separate tree is constructed for every type of LAF construction. Starting
with a set S, of frames of a single type of construction, the set is recursively divided into
subsets at non-terminal nodes. Non-terminal nodes are inserted until (a) the cardinality of
the particular subset is below a predefined threshold, the ’leaf capacity’, or (b) the frames
in the subset are indistinguishable. If either (a) or (b) is satisfied, a leaf node is constructed.
The condition (b) accommodates for the situation where there are multiple images of the
same object in the database, or when the objects contain repetitive structures.

Let r(A) denote a random realisation of frame A in a query image. r is a random
function that encapsulates geometric and photometric misalignments between correspon-
ding frames, as well as image noise, blur and other image distortions. Algorithm 2 ensures
that A is represented in every leaf where the probability of a query realisation r(A) falling
to that leaf is above a threshold ©,; ©, is a parameter of the method. Next we describe
the process of evaluation of the probability that a query realisation r(A) of frame A will
descend the left (p(dge.(r(A4)) = L)), and right (p(dz.e.(r(A)) = R)) subtree respectively,
given a classifier dx e, and the frame A.

2.2 Estimation of geometric misalignment

. The precision of the geometric alignment achieved by the MSER-LAF method was
analysed. Local affine frames were constructed on several image pairs related by known
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Figure 2: Structure of the MSER-LAF object recognition method

homographies. Corresponding frames did not align perfectly — a single spot in the scene
occurs at slightly different pixels in the patches. Figure 3 shows covariance matrices of
distributions of pixel displacements, estimated on thousands of frames?. The distributions
represent a localisation uncertainty lx of pixels in query patches. As expected, the farther
from the detected frame, the larger is the uncertainty. It is also seen that the distributions
differ significantly for different types of frame constructions. A separate set of distributions
is therefore maintained for each frame type.

2The patch size is 31 x 31 pixels, but for presentation clarity Figure 3 shows the distributions for only
every second pixel of the patch
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Algorithm 1: MSER-LAF-TREE:
stored frames

Algorithm 2: MSER-LAF-TREE: Learning
Input: S4: Set of LAFs of one type

Retrieving

Input:

A: a query local affine frame
Output:

S': a set of candidate matches

Tree.retrieveFrames (A) — S
S := root.retrieveFrames (A)

Node.retrieveFrames (A) — S
if isLeaf then

S :={A;: A; € leafFramesAsimilar(A4, A;)}

else
if dg 0. (A) =L then

S := leftSubtree.retrieveFrames (A)

else {dgxo,.(A) =R}

S := rightSubtree.retrieveFrames (A)

Tree.build (S4)
S:=10
for all A€ S, do
S = SU{{A,1}} {assign unit probabi-
lity }
root.build (.5)

Node.build (S)
if |S| < leaf capacity or indistinguishable

(S) then
isLeaf := true, leafFrames := S
else
dx 64 = selectClassifier (.5)
SL=0,Sg=10

for all {A,p4} € S do
pL :=pa - p(dxex(r(A)) = L)
pr = pa - pldzex(r(4)) =R)
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Figure 3: Geometric misalignment of detected frames, experimentally obtained for different
types of frame constructions. The images show covariance matrices of distributions of displa-
cements of pixels in rasterised patches, centred around detected LAFs. (a) LAF construction
based on normalisation by region covariance matrix, (b) LAF construction based on a bi-tangent
segment, (c) LAF construction based on normalisation by covariance matrix of a concavity [8]

2.3 Considering the estimated geometric uncertainty

. Having a database frame A of certain type, what is the probability of observing value v at
measurement position X in a corresponding query frame r(A)? The situation is depicted in
Figure 4. Fig. 4(a) illustrates a part of the patch around measurement position X, and the
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Figure 4: Probability of observing value v at position X in a query realisation of frame A (a)
localisation uncertainty Ix for a pixel at position X, (b) probability px 4(v) of value v, (c) the
probability after considering photometric noise

corresponding distribution of localisation uncertainty lx for that particular frame type.
The probability p(v) of observing a value v in a query frame at position X is given as

pxa(v) = / lxdQ, (1)
Q'U,A

where €, 4 is the area in A covered by pixels of value v. Fig. 4(b) shows the resulting
distribution pg 4(v) for the example from Fig. 4(a). Narrow distributions of px 4(v), which
are benign for unambiguous decisions about query frames, are intuitively obtained either
in areas of uniform intensity or where the localisation is precise.

The framework also consistently handles situations when some of the measurements
are undefined, e.g. because not being on the object. Let us consider a case, where the
outline of the model object is available (as in Figure 5(a)). Some of the frames will
partially cover an area not on the object. In this area, the model cannot predict what
value v will occur in a query frame. Since we do not build any background model (the
probability distribution of intensities in the scene background) we consider all values v
equiprobable. That is, if X is outside of the object, px a(v) has flat distribution over the
whole domain of v (pg.a(v) = 1/256 for v € {0,...255}).

2.4 Modelling photometric noise

. A very simple model of photometric noise is employed — the noise distribution is assumed
to be flat in a range of (—¢, €) intensity values. As illustrated in Figure 4(c), the probability
of observing v becomes px 4(v)/e. In the experiments, € is set to 10, independently of v.

Going back to the Algorithm 2, the probabilities that a query realisation r(A) will
descend into the left and right subtree respectively are expressed as

Ox 255
Pldzoc(r(A)) = L) = i Px.a(v) dv, resp. p(dze.(r(A4)) =R) = A px.a(v)du(2)
for v € {0...255}.

The remaining issue in the tree construction algorithm is the choice of classifiers for
non-terminal nodes. The objective is to minimise the expected recall time for query frames.
Note that it does not necessarily mean to minimise the tree depth, since the distributions
of database and query frames can significantly differ. if we would be able to construct a
tree in which most background frames (which may easily account for 99% of all query
frames) are discarded by first few decisions, the overall response time would be faster even
if the foreground frames are deep in the tree. But the modelling of the background have

12
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Figure 5: The need for variable-sized measurement regions. (a) An example of a segmented
model image and some of its frames. Using a common fixed measurement region where values
are defined for all frames would lead to small nondescriminative descriptors. Large regions would
include background in test images. (b) Frames detected on multiple instances of the ’e’ letter
on the 'Multiple view geometry’ book title. The patches cannot be distinguished close to the
detected frames and a distant measurement (e.g. on a neighbouring letter) is needed to separate
them.

not been implemented yet, and in the following we assume that the distribution of query
frames is close to that of the frames on the objects. The assumption holds for closed-world
setups, e.g. for the COIL-100 database (see Section 3).

To select the classifier for a non-terminal node, let us have a set S of frames A, each
with assigned probability p4 — the probability that r(A) will descend from root to that
node. The task is to select a measurement position X and a threshold ©Ox so that, on
average, the queries reach leaf nodes in minimal time, i.e. on minimal tree level. The
requirements translate to (a) that the tree is balanced for query frames (thus, due to the
closed-world assumption, for the stored frames), and (b) the number of ambiguous frames
stored in both subtrees is minimised. It follows from (a) that for any particular X, the
threshold Ox is set to median value, so that

Y panldre.(r(A) =L) = Y pap(dee,(r(4) =R)

AeS AeS
255
ZPA/ Pxa(v = ZPA/ Pxa(v) dv (3)
Aes Aes

The measurement position X that best separates (minimises overlap) of the frames in S
is selected as

argmln

5] Zmln (pAp co-(r(A) = L), papldze(r(A)) = R)) (4)

AeS

Ideally, when a position X (and a corresponding threshold Ox) is found which perfectly
separates the set S, the minimised term evaluates to zero. In the worst case of identical
distributions p(dx, ©x(r(A))) for all A € S, the term evaluates to 0.5. Let us consider the
example shown in Figure 5 (b). In idealised case of noise-free images and perfect alignment
of frames, no measurement positions X on the letter e’ nor the brown book background
will allow for discrimination of the frames. The formula 4 ensures that rather a distant
but discriminative measurement is selected.

3 Experiments

The performance of the proposed method, both in the recognition rate and execution
speed, was evaluated on two datasets. The COIL-100 dataset has been widely used in
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object recognition literature [12, 8, 4, 2, 13|, and the experiment is included to compare
the recognition rate with other state-of-the-art methods. ZuBuD, the second dataset,
represents a larger, real-world problem, with images taken outdoor, with occluded objects,
varying background, and illumination changes?.

F Igﬂll

Figure 6: COIL-100 [1]: (a) Several objects from the database, (b) Examples of query images
for the occlusion experiment

Figure 7: ZuBuD dataset [10]: Examples of (a) query and (b) the corresponding database images.

3.1 COIL-100.

The Columbia Object Image Library (COIL-100) [1] is a database of colour images of 100
different objects; 72 images of each object placed on a turntable were acquired at pose
intervals of 5°. Neither occlusion, background clutter, nor illumination changes are present.
Several images from the database are shown in Figure 6(a). First two experiments were
performed that differ in the number of images used for training. The achieved recognition
rate was 98.2% for 4 training views per object (90° apart, 68 test views per object) and
99.7% for 8 training views (45° apart, 64 test views). Table 1 summarises the results and
provides comparison to other published results.

In another experiment, occlusion of the objects was simulated by blanking one half
of the test images (see Figure 6 (b)). Four full (unoccluded) training views per object
were used in training. The recognition rate was 87%, which is comparable to the results
of other methods on unoccluded images.

Table 2 provides qualitative information about the experiments. Two variants of the
recognition system were evaluated, one which recalls the stored frames via the proposed
decision tree (with sublinear recall time), and a second one which sequentially scans
through all stored frames (linear recall time). Note that doubling the number of training
images (columns 2 and 3) did not double the recall time for the tree approach. This
confirms the claim that the recall time is sub-linear in the number of stored frames. The
recall times in the Table 2 show that using the decision tree matching of approximately 500

3Many ad-hoc experiments have been performed using a live recognition system. The system is capable
of recognition of about 100 of objects with response time under 1 second, is viewpoint insensitive, and
handles partially occluded objects and cluttered background. Demonstration of the system will be shown
during the conference.
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query frames against hundreds of thousands of stored frames takes about 2 milliseconds.
The total response time of the recognition system is the sum of the time needed to build
the query image representation (independent of the number of database objects — 7th row
of Table 2) and the recall time (8th or 9th row).

Method 8 views | 4 views || Method \ 8 views \ 4 views
MSER+LAF+tree (proposed) | 99.8% | 98.2%

MSER+LAF 2002 [§] 99.4% | 94.7% | Spectral representation [4] | 96.3% -
Kullback-Leibler SVM [12] 95.2% | 84.3% || SNoW / edges [13] 89.2% | 88.3%
Spin-Glass MRF [2] 88.2% | 69.4% || SNoW / intensity [13] 85.1% | 81.5%
Linear SVM [13] 84.8% 78.5% || Nearest Neighbour [13] 79.5% 74.6%

Table 1: COIL-100 experiment: Comparison with published results

COIL-100 ZuBuD
Occluded queries no no yes n/a
Training view dist 90° 45° 90° n/a
Number of DB images 400 800 400 1005
Number of DB frames 186346 | 385197 | 186346 251633
Number of query images 6800 6400 6800 115
Avg number of query frames 494 494 269 1594
avg time to build representation || 520 ms | 522 ms | 251 ms || 1255 ms
avg recall time without the tree || 493 ms | 3471 ms | 277 ms | 27234 ms
avg recall time with the tree 199 ms | 2.17ms | 1.07 ms | 14.3 ms
recognition rate 98.24% | 99.77% | 87.01% 93 %

Table 2: Experimental results on COIL-100 and ZuBuD datasets

3.2 ZuBuD dataset

. The experiment was conducted on a set of images of 201 buildings in Zurich, Switzerland,
which is publicly available [10]. The database consists of five photographs of every of the
201 buildings. A separate set of 115 query images is provided. For every query image, there
are exactly five matching images of the same building in the database. Query and database
images differ in viewpoint, variations in the illumination are present, but rare. Examples
of corresponding query and database images are shown in Figure 7. Experimental results
are summarised in the last column of Table 2. The slower recall times, compared with the
COIL-100 dataset, are caused by a higher number of query frames and by the increase of
the leaf capacity from 4 to 10 — up to 10 frames were searched exhaustively in the leaf
nodes. The leaf capacity represents a trade-off between recall speed and recognition rate.
Setting the capacity to 1000, a recognition rate of 98.2% was achieved, but the average
recall time dropped to 510 ms. Linear exhaustive scan through all the stored frames
(avoiding the tree) achieved recognition rate of 100% [9], but with recall times over 27
seconds per image.

4 Conclusions

An object recognition method capable of sub-linear recall has been proposed. Objects are
represented by local affine frames, i.e. as a set of local photometric measurements expressed
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in object-centred coordinates. The local affine frames are stored in a binary decision-
measurement tree organised to minimise average time to decision. A frame is recognised
by descending the tree where each decision not only reduces the number of potential
corresponding frames represented in the tree but also defines which measurements are
taken next.

We show experimentally that the method supports near real-time recognition of hun-
dreds of real-world objects with state-of-the-art recognition rates. Establishing correspon-
dences between hundreds of query local frames and hundreds of thousands of stored frames
takes only a few milliseconds. The proposed LAF-TREE method possesses all the stren-
gths of local region methods — robustness to background clutter, occlusion, and large
changes of viewpoints.
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