
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
Fakulta elektrotechnická

CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering

Modular System for Error-free Computation of Large
and Ill-conditioned Set of Linear Equations

Modulárńı systém pro bezchybný výpočet velkých a špatně
podmı́něných soustav lineárńıch algebraických rovnic

Ing. Róbert Lórencz, CSc.

Habilitation lecture / Habilitačńı přednáška

June 1, 2005

Summary

This work deals with the issue of design of a modular system for error-free computation
of a Set of Linear Equations (SLE) based on the residual number system.

In the introduction, reasons and motivation of the chosen approach to the solution of the
problem of an error-free computation of an ill-conditioned SLE are mentioned.

In the first part of the presentation, the mathematical principles and algorithms of an
error-free solution of SLE on the residual number system base are introduced. A brief
description of a modular system architecture is given. The architecture benefits from
parallelism coming from the use of the residual number system. This architecture consists
of identical residual processors (RP) implemented in hardware. Each of these processors
solves a set of linear congruences (SLC) derived from SLE in modular arithmetic with its
own modulo. The architecture of residual processors is designed with the aim to achieve
the best performance of computation of SLC according to the Gauss-Jordan elimination.
This architecture is covered by Czechoslovak patent [16]. One of the crucial points of
the design of RP are its vector arithmetic units. The arithmetic units are also hardware
identical and they perform four basic arithmetic operations in modular arithmetic. The
performance of the whole computation of a SLE strongly depends on efficient execution
of these basic arithmetic operations. The operation of multiplicative modular inverse has
the greatest computational complexity. For this reason, the major emphasis of the design
of the whole system is put on the computation of modular inverse.

The second part of this presentation describes a new algorithm for computing multiplica-
tive modular inverse and its hardware architecture, which are covered by a Czech patent
[12]. The presented new ”Left-shift” algorithm has been designed with respect to efficient
computation of modular inverse. Almost the least number of addition and subtraction
operations, which represent a significant extension of the critical path of hardware im-
plementation, is achieved. The permission of occurrences of negative values, which are
represented in the two’s complement code, has completely eliminated complex compari-
son tests (greater/lesser) during the calculation of modular inverse. In conclusion of the
second part, a mathematical proof of correct calculation of modular inverse according to
the ”Left-shift” algorithm is introduced.

Finally, the overview of main achievements related to the design of a modular system for
error-free computation of SLE and multiplicative modular inverse are summarized.

2

Souhrn

Tato práce se zabývá návrhem modulárńıho systému pro přesné řešeńı soustav lineárńıch
rovnic (SLR) na bázi systému kód̊u zbytkových tř́ıd.

V úvodńı části jsou stručně popsány d̊uvody a motivace zvoleného př́ıstupu řešeńı prob-
lematiky přesného poč́ıtáńı špatně podmı́něných SLR.

V prvńı části prezentace jsou uvedeny základńı matematické principy a algoritmy přesného
řešeńı SLR na bázi systému kód̊u zbytkových tř́ıd. Je zde popsána stručně architek-
tura modulárńıho systému využ́ıvaj́ıćıho paralelizmu plynoućıho z použit́ı systému kód̊u
zbytkových tř́ıd. Tato architektura se skládá z hardwarově identických residualńıch proce-
sor̊u (RP). Každý z těchto procesor̊u řeš́ı soustavu lineárńıch kongruenćı (SLK) odvozenou
ze SLR v dané modulárńı aritmetice s vlastńım modulem. Architektura reziduálńıch pro-
cesor̊u je navržena tak, aby co nejefektivněji řešila SLK pomoćı Gauss-Jordanovy elimi-
nace. Tato architektura je předmětem československého patentu [16]. Jedńım z kĺıčových
bod̊u návrhu RP jsou jeho vektorově pracuj́ıćı aritmetické jednotky. Aritmetické jed-
notky jsou opět hardwarově identické a vykonávaj́ı čtyři základńı aritmetické operace
v modulárńı aritmetice. Od efektivity prováděńı těchto operaćı značně záviśı efektivita
celého výpočtu SLR. Výpočetně nejsložitěǰśı je operace multiplikativńı modulárńı inverze.
Z tohoto d̊uvodu je při návrhu celého systému věnována této operaci velká pozornost.

V druhé části prezentace je uveden nový algoritmus výpočtu multiplikativńı modulárńı in-
verze a jeho hardwarová architektura, které jsou předmětem českého patentu [12]. Prezen-
tovaný nový ”Left-shift” algoritmus je navržen s ohledem na co nejefektivněǰśı výpočet
modulárńı inverze. Zvlášt’ velký d̊uraz je kladen na co nejnižš́ı počet operaćı sč́ıtáńı a
odč́ıtáńı, které představuj́ı významné prodloužeńı kritické cesty hardwarové implemen-
tace. Povoleńım výskytu záporných č́ısel, reprezentovaných v doplňkovém kódu, jsou
v pr̊uběhu výpočtu úplně odstraněny složité testy větš́ı/menš́ı. Na závěr druhé části je
uveden matematický d̊ukaz správnosti výpočtu multiplikativńı modulárńı inverze poč́ıtané
podle nového ”Left-shift” algoritmu.

V závěru jsou shrnuty hlavńı dosažené výsledky souvisej́ıćı s návrhem modulárńıho
systému pro přesné řešeńı SLR a multiplikativńı modulárńı inverze.

3

Keywords:

set of linear equations, multiplicative modular inverse, residual number system, modular
arithmetic, Euclid algorithm, error-free computation, ill-conditioned problems, floating
point arithmetic

Kĺıčová slova:

soustava lineárńıch rovnic, multiplikativńı modulárńı inverze, systém kód̊u zbytkových
tř́ıd, modulárńı aritmetika, Euklid̊uv algoritmus, bezchybné poč́ıtáńı, špatně podmı́něné
úlohy, aritmetika s plovoućı řádovou čárkou

4

Contents

1 Introduction 6

2 Error-free Computation of a Set of Linear Equations 6

2.1 Method of Solving a Set of Linear Equations using the Residual Number
System . 6

2.2 Modular System for Solving Sets of Linear Equations Exactly 9

3 Algorithm for Modular Inverse 11

3.1 New Left-shift Algorithm for the Classical Modular Inverse 11

3.2 Results and Discussion . 12

3.3 HW Implementation . 14

3.4 The Mathematical Proof of the Left-shift Algorithm 15

4 Conclusion 18

References 18

Ing. Róbert Lórencz, CSc. 20

5

1 Introduction

Many numerical methods were developed trying, with more or less success, to minimize
the influence of the rounding errors on the resulting solution. One of the important study
fields of numerical mathematics are the methods of error-free computation that use finite
number systems, in which the computation is performed without rounding errors and
which are used in digital computers. Consequently, any effort to use a digital computer
to perform arithmetic in the field of real numbers often results in a failure because of the
impossibility to map an infinite set of real numbers to a finite set of numbers represented
inside a computer.

Usually we attempt to approximate the arithmetic of real numbers on a computer us-
ing the so-called floating-point numbers, more appropriately called the set of computer-
representable numbers. The properties of the set of floating-point numbers and the rules
for their representation in computers are contained in [1]. It is appropriate to mention
here that on a binary computer the only candidates for membership in the floating-point
number set are rational numbers of the form p/q, where p, q are integers, and q is a
power of two. Thus, there is no possibility to represent the continuum of real numbers
in any detail. The representation of a real number in a binary computer is provided by
its closest computer-representable number, thereby introducing the rounding error. It is
not difficult to show that an approximation using the finite set of floating-point numbers
can cause incorrect and unusable results in the cases of ill-conditioned and numerically
unstable tasks [7, 20]. This fact is a strong reason for using number systems in which we
can perform exact arithmetic, i.e. without rounding errors. A residual number system
can fulfill this requirement.

2 Error-free Computation of a Set of Linear Equa-

tions

The numerical tasks of linear algebra are often performed in a number system which
eliminates partially or completely the rounding errors that occur during the calculation of
the solutions [5, 8, 10, 17, 18, 23]. This is a motivation for a construction of straightforward
algorithms for linear algebra that utilize primarily only basic arithmetic operations, which
are easily implemented in arithmetic of various number systems. The next reason is the
fact that solving problems of linear algebra is done frequently in numerical mathematics
in particular it is the solution of linear algebraic equations. When solving a set of linear
equations (SLE), one often meets the problem of an ill-conditioned matrix of the set. For
large dense sets of linear equations, which are usually ill-conditioned, the stability of a
numerical solution cannot be ensured. Rounding errors committed during the numerical
computations involved in obtaining the solution of the problem cannot be tolerated. Many
numerical methods were developed trying, with more or less success, to minimize the
influence of the rounding errors on the resulting solution [4, 17, 21, 23].

2.1 Method of Solving a Set of Linear Equations using the
Residual Number System

Residual number system (RNS) appears to be a suitable number system for implementing
certain numerical methods for error-free solving of a set of linear equations [13]. One of

6

RP1 RP2 RP3 RPpRPk

MODULAR SYSTEM
CENTRAL
CONTROL

UNIT

BUS

HOST
SYSTEM

Figure 1: Modular system

such methods is described in [14, 15]. The computational complexity of this method
is larger than the complexity of the original task of solving the a SLE in the set of
floating-point numbers. Therefore, the mentioned papers describe a design of a parallel
architecture of a modular system which speeds up the complete calculation. The method
in papers [14, 15] describes the algorithms for the parallel architecture of a modular
system for solving SLR exactly using RNS (see Figure 1), where RP1, RP2, . . ., RPp are
residual processors (p is number of processors), which are interconnected via BUSES. The
principles of this approach are briefly described in the following text.

Let us have a SLE with integer coefficients

Ax = b. (1)

If we denote M(b) = max(|bi|) and M(A) = max(|ai,j|), where i, j ∈ [1, n], then the size
of a modulus M of single-modulus residue arithmetic used in an error-free algorithm to
solve (1) is given as [18]

M > 2 max{n
n
2 · M(A)n, n(n− 1)

n−1
2 · M(A)n−1 · M(b)}. (2)

Since the modulus M estimated using (2) is very large, its application to calculations is
not practical. The hardware architecture would be impossible to implement, or, in the
case of a software realization, the computational complexity would be immense. There-
fore it is more suitable to use a known set of moduli m1, m2, . . . ,mr of RNS using the
multiple-modulus residual arithmetic. Then the calculation in each single-modulus resid-
ual arithmetic with modulus mi can be carried out in parallel (in residue processors RP1,
RP2, . . ., RPp, where p can be different from r – see also Figure 1), as long as there is
a dedicated hardware architecture that allows it. The moduli must fulfill the following
conditions [5, 18]

a)
r∏

i=1

mi ≥ M ,

b) each mi for i ∈ [1, r] is prime and

c) m1 < m2 < · · ·mr < (2e − 1),

where e is the length of the word in bits (number of bits of internal data buses, registers
and functional units of Rp).

Since the elements of the solution vector x are rational numbers in general, it is essential
to utilize the following trick to solve a SLE with integer coefficients using RNS

Az = db, (3)

7

where d = detA. The elements of the solution vector z of such a SLE are integeres, and
then the solution vector x can be obtained using floating-point arithmetic:

x =
1

d
z. (4)

The method of solving (1) according to the previous conditions consists of three basic
steps [15]:

1. Conversion of the coefficients ai,j of matrix A and the coefficients bi of vector b,
where i, j ∈ [1, n], of SLE (1) to r systems of a set of linear congruences (SLC)
Ayk ≡ b (mod mk), k ∈ [1, r].

2. Solving r systems of SLC Ayk ≡ b (mod mk) using the Gaussian elimination
with pivoting [15] in modular arithmetic modulo mk, where k ∈ [1, r]. Also the
determinants dk = detA mod mk are computed. Then the solution of (3) modulo
mk is obtained as zk = dkyk for k = 1, 2, . . . , r.

3. Conversion of the resulting vectors zk and the determinants dk using the mixed-
radix conversion (MRC) algorithm [5] from the RNS into a single vector z such that
zk ≡ z (mod mk) for k = 1, 2, . . . , r. The solution of (1) is obtained as x = 1

d
z.

The first step of the method can be executed in parallel using a certain broadcast tech-
nique. This means that each processor RPk, k ∈ [1, p], reads integer (or rational number)
elements of the matrix A and the vector b of SLE, and converts them simultaneously into
residues modulo m1, m2, . . . ,mr. Assuming the number of processors p is equal to r, for
the first step of the method we have O(n2) parallel operations that convert integers into
residuals.

The second step of the method is completely parallel since the solutions of each SLC
Ayk ≡ b (mod mk) are independent for every k = 1, 2, . . . , r. In the case when the
number of processors p in a parallel system is equal to r, the processor k can be allo-
cated for computations modulo mk: processor k solves the SLC Ayk ≡ b (mod mk),
and computes the determinant dk = detA mod mk, and then proceeds to compute
z = dk yk mod mk. This computation is performed simultaneously by all proces-
sors 1, 2, . . . , r. Since the Gaussian elimination on a matrix of dimension n requires O(n3)
arithmetic steps, assuming p = r we get O(n3p/r) = O(n3) arithmetic steps for the second
step of the method.

At the end of the second step of the method we obtain an n-element vector zk and an
integer dk in processor k for k = 1, 2, . . . , r. We apply the MRC algorithm [5] to compute
an n-element vector z and an integer d. Let the (n + 1)-element vector tk be

tk =

[
zk

dk

]
. (5)

We can use the MRC algorithm to compute the (n + 1)-element vector t so that
t ≡ tk (mod mk) [24]. The MRC algorithm returns the vector t, from which we
extract the value of determinant d and the elements of vector z. Then the final solution
vector x is computed using (4).

The MRC sequential algorithm consists of two steps. First, the values tk are updated
according to the following recursion:

8

for l := 1 to r − 1 do
for k := l + 1 to r do

tk := (tk − tl)ck,l mod ml,

where ck,l are the multiplicative inverses of mk modulo ml for 1 ≤ k < l ≤ r. After the
above update process, the elements of the vectors tk are the mixed-radix coefficients of
the elements of the final vector t, which can be obtained by computing

t = t1 + m1t2 + m1m2t3 + m1m2m3t4 + · · ·+ m1m2 · · ·mr−1tr.

Since the MRC algorithm of r integers takes O(r2) arithmetic operations [10, 18], we have
O(nr2) arithmetic operations, which are required by sequential MRC algorithm for the
(n + 1) vector t.

In general, p ≤ r processors are available. Hence, we partition the moduli set in such a
way that each processor works with at most q moduli, where q = dr/pe.

Then the first step of the method will have O(qn2) operations of integer to residue con-
version, and the second step requires O(qn3) modular arithmetic operations. In the case
of p ≤ r processors, the number of steps in the third step of the method depends on the
parallel organization of the processors.

2.2 Modular System for Solving Sets of Linear Equations Ex-
actly

The method of solving SLEs described in the previous part can be implemented in a
special parallel hardware system which was published by the author in [14, 15].

The first of these papers [15] describes the method, the algorithm, and the corresponding
parallel hardware architecture of a system for solving a dense SLE precisely. The error-free
calculation of SLE with operations performed in residue arithmetic is implemented in this
special modular system. The modular system has typically a parallel SIMD architecture,
and consists of one control unit and several identical processing units – Residual Processors
(RPs) RP1, RP2, . . ., RPp interconnected with BUS (see Figure 1). The architecture of
RPk depicted in Figure 2 consists of Memory, Arithmetic Units AU1, AU2, . . ., AUj

. . . AUn+2 and the Control unit. Memory contains elements of matrix A and vector y.
Storing values of one row of the matrix from registers of AU’s is performed bitwise via
the Serial Inputs SI1, SI2, . . . , SIj−1, . . . , SIn+1. Loading values of rows of Memory to
AU’s is done via the Serial Outputs SO2, SO3, . . . , SOj, . . . , SOn+1. The bits of values of
elements of the first column of the matrix are read by the Control unit via the parallel bus
PO1. All AU’s and the Control unit are interconnected via Internal Bus. The described
architecture of RPk can solve SLC Ayk ≡ b (mod mk) according to the second step
on page 8. The residual processors RPk, k ∈ [1, p] together with the Control unit of
the Modular system also support the execution of all conversion operations from integer
to RNS and vice versa according to steps one and three described on page 8. The INV
and DET units compute the modular multiplicative inverse and the determinant of A,
respectively.

The second paper [14] deals with the hardware architecture of individual parts of the
modular system. Also, the spatial complexity of the individual parts and the whole
modular system is introduced.

9

a12

a22

an2

a11

a21

an1

a13

a23

an3

a14

a24

an4

a1n

a2n

ann

a1n+1

a2n+1

ann+1

a1j

a2j

anj

PO1 SI1 SO2 SI2 SO3 SI3 SO4 SI4 SOj SIj SOn SIn SOn+1 SIn+1

AU2 AU3 AU4 AUn AUn+1 AUn+2AUj

SIj-1

RESIDUAL
PROCESSOR

RPk

CONTROL
UNIT

BUS

INV

INTERNAL BUS

MEMORY

DET

Figure 2: Residual processor

The main contributions of both papers are:

• The design of a new hardware architecture of a residual processor (Figure 2 of [15]
and Figure 1). The interconnection of memory and arithmetic units covered by a
patent [16] (see Figure 2). The architecture of RPs lower the time complexities of
the conversion from SLE to SLCs and the SLCs computation by a factor of n.

• An efficient solution of a problem with negative values of the resulting vector.

• A discussion and calculation of the probability of a failure in the situation when
gcd(M, d) > 1, i.e. dk ≡ 0 (mod mk) for any k ∈ [1, r].

• An introduction of a hardware solution to the so-called ”non-zero residue pivotiza-
tion” of the Gauss-Jordan elimination of SLC.

• A detailed design of the hardware architectures of individual parts of the modu-
lar system with respect to an efficient execution of basic arithmetic operations in
modular arithmetic.

The method of solving a SLE implemented in the modular system uses only four basic
arithmetic operations, namely addition, subtraction, multiplication and division, to obtain
the solution vector. For solving the SLC using RP’s, four basic arithmetic operations
executed in modular arithmetic are used. An important operation in modular arithmetic
is multiplicative modular inverse because of its largest computational complexity. The
modular system has a very efficient hardware implementation of addition, subtraction
and multiplication. However, multiplicative modular inverse is realized by a look-up
table (ROM), where for each integer in Galois Field GF(mk), a value of the multiplicative
inverse modulo mk is associated. Such a solution has several drawbacks. First, with
a growing modulus mk the time complexity of the conversion also grows because larger
addresses need to be decoded. The capacity of the ROM grows with the size of mk

exponentially. For some parameters of a SLE to be solved using the modular system the
look-up table takes more space than the residual processor. Due to this fact it was needed
to solve the problem of efficient computation of the multiplicative inverse (INV unit of
RP, see Figure 2) in Galois Field GF(p), where p is prime, and its implementation in
hardware.

10

3 Algorithm for Modular Inverse

Hardware implementation of the multiplicative modular inverse, in contrast to other basic
modular operations, namely addition, subtraction, and multiplication, has not been fully
explored yet due to the computational complexity of the modular inverse. There are many
hardware applications in the area of cryptography and error-free numerical algorithms that
utilize the computation of modular multiplicative inverse. Due to these facts, the design
of new and efficient algorithms for computing the modular inverse suitable for hardware
implementation on various platforms is always a current task in the field of computer
science. Many different approaches for computing the modular inverse were developed,
both for software and hardware implementations [2, 3, 5, 6, 9, 10, 22]. One of the well-
known algorithms for computing the modular inverse is based on the Extended Euclidean
Algorithm (EEA). The next section deals with the new efficient algorithms for computing
modular inverse based on EEA and their implementation in hardware.

3.1 New Left-shift Algorithm for the Classical Modular Inverse

Using the classical definition, the multiplicative inverse of an integer a ∈ [1, p − 1]
modulo the prime number p is define as integer x ∈ [1, p − 1] satisfying the condition
ax ≡ 1 (mod p). Often, the notation x = a−1 mod p is used.

The new approach to the calculation of modular inverse [11, 12], which is the subject
of this section, avoids the drawbacks of current algorithms, that are Penk’s algorithm
[10] and Kaliski’s algorithm for Montgomery inversion [9]. In Penk’s algorithm, these
are especially: high number of tests, which essentially represent a subtraction and also an
addition if some immediate results are negative. In case of the modular inverse calculation
using the Montgomery modular inverse according to Kaliski, it is necessary to perform
the deferred halving in k iterations in second phase of algorithm, including corrections of
r if it is odd. An algorithm that avoids the mentioned problems is presented below:

Left-shift algorithm

Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 (mod p), c u, c v

and 0 < c v + c u ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. c u = 0, c v = 0
3. while(u 6= ±2c u & v 6= ±2c v)
4. if (un,un−1= 0) or (un, un−1 = 1 & OR(un−2, . . . , u0) = 1) then
5. if (c u ≥ c v) then
6. u := 2u, r := 2r, c u := c u + 1
7. else
8. u := 2u, s := s/2, c u := c u + 1
9. else if (vn, vn−1 = 0) or (vn, vn−1 = 1 & OR(vn−2, . . . , v0) = 1) then
10. if (c v ≥ c u) then
11. v := 2v, s := 2s, c v := c v + 1
12. else
13. v := 2v, r := r/2, c v := c v + 1
14. else
15. if (vn = un) then

11

16. oper = ”− ”
17. else
18. oper = ” + ”
19. if (c u ≤ c v) then
20. u := u oper v, r := r oper s
21. else
22. v := v oper u, s := s oper r
23. if (v = ±2c v) then
24. r := s, un := vn

25. if (un = 1) then
26. if (r < 0) then
27. r := −r
28. else
29. r := p− r
30. if (r < 0) then
31. r := r + p
32. return r, c u, and c v.

The Left-shift algorithm was designed to be easily implemented in hardware (see section
3.3). Registers Ru, Rv, Rs are m = n + 1 bit wide registers and contain individual values
of the variables u, v, s. The value of variable r is in m + 1 bit wide register Rr. Counters
Cu and Cv are auxiliary e = dlog2 ne bit wide counters containing values c u and c v. The
presented Left-shifting binary algorithm computes the modular inverse of a according to
equation x = a−1 mod p using EEA and shifting the values u and v to the left, that is
multiplying them by two. The multiplication is performed as long as the original value
multiplied by 2i is preserved, where i is the number of left shifts. Negative values are
represented in the two’s complement code. The shift is performed as long as the bits un,
un−1 or vn, vn−1 are zeros for positive values or ones for negative values, while at least
one of the bits un−2, un−3, . . .u0 or vn−2, vn−3, . . . v0 is not zero - binary ’OR’ (steps 4
and 9). With each shift, counters Cu and Cv (values c u and c v) that track the number
of shifts in Ru, Rv are incremented (steps 6, 8, 11, and 13). Registers Rr and Rs (values
r and s) are also shifted to the right (steps 8 and 13) or left (steps 6 and 11) according
to conditions in steps 5 and 10. In step 15, addition or subtraction, given variable oper,
is selected according to sign bits un and vn for the subsequent reduction of u, v and r,
s in steps 20 and 22. Results of these operations are stored either in Ru and Rr (values
u and r), if the number of shifts in Ru is less or equal to the number of shifts in Rv, or
in registers Rv and Rs (values v and s) otherwise. The loop ends whenever ’1’ or ’-1’
shifted by the appropriate number of bits to the left appears in register Ru or Rv. Branch
conditions used in steps 4, 9, and 15 are easily implemented in hardware. Similarly, the
test in steps 5, 10, and 19 can be implemented by an e bit comparator of values c u and
c v with two auxiliary single-bit flips-flops u/v̄ and wu (see Figure 4).

3.2 Results and Discussion

A simulation and a quantitative analysis of the number of additions or subtractions
(’+/−’), shifts and tests was performed for Left-shift algorithm, Kaliski’s algorithm and
Penk’s algorithm. Simulation of modular inverse computation was performed for all in-
tegers a ∈ [2, p − 1] and all 1899 prime moduli p < 214 (n ≤ 14) . A total of 14,580,841
inverses were computed by each method. Simulation results are presented in Table 1.

12

The number of all tests, additions and subtractions are listed in column ”+/ − /tests”.
The tests include all ”greater than” and ”less than” comparisons except ’v > 0’ in the
main loop, which is essentially a ’v 6= 0’ test that does not require a subtraction. The
”+/−” column lists additions and subtractions without tests. The column ”total shifts”
indicates the number of all shift operations during the computation. The last column
lists the number of shifts minus the number of ’+/−’ operations, assuming the shift is
performed together with storing the result of the ’+/−’ operation. The columns give min-
imum and maximum numbers of operations (min−max) and their average (avg.) values.
Shift operations are faster in hardware than additions, subtractions, and comparison op-

Table 1: Results for primes less than 214

Algorithm +/− /tests +/− total shifts shifts− (+/−)
min - max avg. min - max avg. min - max avg. min - max avg.

Left-shift - - 2 - 21 9.9 2 - 26 23.3 1 - 24 13.4
Kaliski’s 5 - 45 26.2 4 - 40 21.1 6 - 54 38.2 0 - 43 17.1
Penk’s 9 - 80 40.4 6 - 53 27.1 2 - 26 18.1 0 0

erations performed with the Ru, Rv, Rr, Rs registers. The comparison operations are
about as slow as additions/subtractions, since they cannot be performed in parallel; they
depend on data from previous operations. If a suitable code is used to represent negative
numbers, this condition can be realized as a simple sign test, avoiding the complicated
testing. Both Penk’s algorithm and Kaliski’s algorithm suffer from a large number of
additions and subtractions that correct odd numbers before halving in Penk’s algorithm
and in Kaliski’s algorithm, and convert negative numbers in Penk’s algorithm. More-
over, Kaliski’s algorithm needs twice the number of shifts compared to Penk’s algorithm,
required by the second phase.

The previous analysis shows that Left-shift algorithm removes drawbacks of Penk’s algo-
rithm and Kaliski’s algorithm. Let us assume full hardware support for each algorithm
and simultaneous execution of operations specified on the same line of the pseudocodes.
Let us further assume that no test is needed in Kaliski’s algorithm. Then, we can use
the values in columns ”+/−” and ”total shifts” to compare the number of operations.
Left-shift algorithm needs half the number of ’+/−’ operations compared to Kaliski’s al-
gorithm, and 2.7 times less the number of ’+/−’ operations compared to Penk’s algorithm.

The simulation results from Table 1 for prime moduli less than 214 (n = 14) are plotted in
Figure 3. It shows the average number of cycles T needed to compute the modular inverse
using all three algorithms as a function of the ratio ρ, where ρ is defined as the ratio of
the critical path length in cycles of the shift and the critical path length in cycles of the
adder/subtracter. All (Penk’s algorithm) or a part of (Kaliski’s algorithm and Left-shift
algorithm) shift operations are included in ’+/−’ operations. Shift operations that are
not performed as a part of ’+/−’ operations are performed individually (they are listed
in the last column of Table 1).

With an increasing word length, the time complexity of shift operations remains constant.
However, the complexity of additions/subtractions increases approximately dlog2 me -
times, m is the number of bits of a word. For long words, often used in cryptographic

13

Figure 3: Average number of execution cycles T of the three algorithms as a function of
the ratio ρ

algorithms, the modular inverse computation for individually algorithms is strongly de-
pendent on addition/subtraction operations. That in such cases Left-shift algorithm is
twice faster than Kaliski’s algorithm and 2.7-times faster than Penk’s algorithm. The sta-

Table 2: Results of Left-shift algorithm for three cryptographic primes

Primes n +/− total shifts inverses
min - max avg. min - max avg.

2192 − 264 − 1 192 64 - 182 132.9 343 - 382 380 3,929,880
2224 − 296 + 1 224 81 - 213 154.8 408 - 446 441 4,782,054
2521 − 1 521 18 - 472 387.5 999 - 1040 1029 4,311,179

tistical analysis of Left-shift algorithm for large integers of cryptographic was performed.
The results of the analysis are presented in Table 2. The first column contains values
of primes, the second column gives the word length and the last column gives number
of inverses. Other columns have the same meaning as columns in Table 1. The average
number of ’+/−’ operations grows with n approximately linearly. The multiplicative co-
efficient is ≈ 0.7 for all three primes. The average number of shifts is nearly equal to 2n.
Similar results hold for primes p < 214.

3.3 HW Implementation

Left-shift algorithm is optimized in terms of reducing the number of additions and subtrac-
tions, which are critical in integer arithmetic due to carry propagation in long computer
words. Other optimization criteria included making the evaluation of tests during the
calculation as simple as possible and minimizing data dependencies to enable calculation
in parallel calculations.

14

Cu

Ru RvRv Rr

Controller
Controller

Cv

ADD1

d

SHFT1 SHFT2

Rs

ADD2

I/O

m

mm

m

m+1 m

m+1

m

e

e

1

Rm

u/v

TL

m

3

m

wu

MUX3 MUX4

MUX2MUX1

Figure 4: The circuit implementation of Left-shift algorithm

Figure 4 shows the circuit implementing the computation of classical modular inverse.
Only data paths for computing the classical modular inverse according to Left-shift al-
gorithm are shown. The system consists of three basic parts. The first two parts form
the well-known ”butterfly” [2, 3], typical for algorithms based on the EEA; the third part
consists of the controller and support circuitry. ”Master” half of the ”butterfly” calculates
the gcd(m, a) and consists of two m bit registers Ru, Rv, m bit adder/subtracter ADD1,
multiplexer MUX1, and left-shift logic SHFT1. ”Slave” half of the butterfly consists of
(m+1) bit register Rr and m bit register Rs, m bit adder/subtracter ADD2, multiplexers
MUX2, MUX3, MUX4, and right/left-shift logic SHFT1. The controller controls the op-
eration of the entire system. The controller part also includes an m bit mask register Rm
with test logic provided test in step 3, two e bit counters Cu, Cv with the comparator d
and single-bit flip-flops u/v̄ and wu.

3.4 The Mathematical Proof of the Left-shift Algorithm

The Left-shift algorithm has similar properties as the Euclidean Algorithm and algorithms
derived from it, introduced in [5, 10, 19], where methods for their verification are also
presented. By using similar proof techniques we have carried out a proof that Left-shift
algorithm computes correctly the classical modular inverse.

For computing multiplicative inverse of an integer a in the finite field GF(p), where p is
a prime, the following lemma is important.

Lemma 3.1 If gcd(p, a) = 1 and if 1 = px + ab, then a−1 mod p = b mod p.

The proof of the lemma is in [5]. By finding a pair of integers x and b that satisfy
equations in Lemma 3.1, we prove that Left-shift algorithm computes classical inverse in
GF(p). Individual iterations of Left-shift algorithm can be described by following system

15

(6) of recurrent equations and guarding conditions for quotients,

r1 = p− aq1 0 < r1 < aq1 q1 = 2(〈p〉−〈a〉) q1 > 1
r2 = |r1| − aq2 0 < r2 < aq2 q2 = 2(〈r1〉−〈a〉) q2 > 1

...
rj = |rj−1| − aqj 0 < |rj| < a qj = 2(〈rj−1〉−〈a〉) qj > 1

rj+1 = a− |rj|qj+1 0 < |rj+1| < |rj|qj+1 qj+1 = 2(〈a〉−〈rj〉) qj+1 > 1
rj+2 = |rj+1| − |rj|qj+2 0 < |rj+2| < |rj|qj+2 qj+2 = 2(〈rj+1〉−〈rj〉) qj+2 > 1

...
rk = |rk−1| − |rj|qk 0 < |rk| < |rj| qk = 2(〈rk−1〉−〈rj〉) qk > 1

rk+1 = |rj|−|rk|qk+1 0 < |rk+1| < |rk|qk+1 qk+1 = 2(〈rj〉−〈rk〉) qk+1 > 1
rk+2 = |rk+1| − |rk|qk+2 0 < |rk+2| < |rk|qk+2 qk+2 = 2(〈rk+1〉−〈rk〉) qk+2 > 1

...
rl = |rl−1| − |rk|ql 0 < |rl| < |rk| ql = 2(〈rl−1〉−〈rk〉) ql > 1

...

...
rm = · · ·
rm+1 = · · ·

...
rn = |rn−1| − |rm| 0 < |rn| < |rn−1| qn = 2(〈rn−1〉−〈rm〉) qn = 1

rn+1 = |rn−1| − |rn|qn+1 0 < |rn+1| < |rn|qn+1 qn+1 = 2(〈rn−1〉−〈rn〉) qn+1 > 1
rn+2 = |rn+1| − |rn|qn+2 0 < |rn+2| < |rn|qn+2 qn+2 = 2(〈rn+1〉−〈rn〉) qn+2 > 1

...
ro = |ro−1| − |rn|qo |ro| = 1 qo = 2(〈ro−1〉−〈rn〉) qo > 1
0 = |rn| − |ro|qo+1,

(6)

where r1, r2, . . . , ro+1 are remainders, q1, q2, . . . , qo+1 are quotients, 〈ri〉 is the number of
bits needed for binary representation |ri|. If the recursive definition of ri is unrolled up
to p and a, each ri can be expressed by a Diophantine equation ri = pfi + aqi, where
fi = fi(q1, q2, . . . , qi), and gi = gi(q1, q2, . . . , qi).

The last non-zero remainder equal ro fulfils the following theorem:

Theorem 3.1 gcd(p, a) = 1 iff |ro| = 1.

Proof gcd(p, a) = gcd(r1, a) = gcd(r2, a) = · · · = gcd(rj−1, a)
= gcd(a, |rj|) = gcd(|rj+1|, |rj|) = · · · = gcd(|rk−1|, |rj|)
= gcd(|rj|, |rk|) = gcd(|rk+1|, |rk|) = · · · = gcd(|rl−1|, |rk|)
= gcd(|rk|, |rl|) = · · ·
...
= · · · = gcd(|rn−1|, |rm|) = gcd(|rn|, |rm|) = gcd(|rn−1|, |rn|)
= gcd(|rn−1|, |rn|) = gcd(|rn+1|, |rn|) = · · · = gcd(|ro−1|, |rn|)
= gcd(|rn|, |ro|) = gcd(|ro|, 0)
= |ro| = 1.

�

16

The previous statement assumed the following trivial properties of gcd:

gcd(0, d) = |d| for d 6= 0,
gcd(c, d) = gcd(d, c),
gcd(c, d) = gcd(|c|, |d|),
gcd(c, d) = gcd(c + ed, d),

where c, d, and e are integers. The description of the properties is introduced in [5, 19].

The fact that the guarding conditions for quotients qi guarantee correct values of remain-
ders ri follows from the Lemma 3.2:

Lemma 3.2 Let c and d be positive integers with binary representations c = 2i+ci−12
i−1+

· · · + c0 and d = 2j + dj−12
j−1 + · · · + d0. Assume i ≥ j. Let q = 2(i−j) and e = c − qd.

Then:
|e| < qd and |e| < c.

Proof Follows easily from identity
i∑

k=1

1

2k
= 1− 1

2i
,

which is proven for example in [19]. �

The computation specified in Equations (6) can be expressed in the form of Table 3, which
gives the expressions for integer values fi and gi.

Table 3: The computation of fo, go, and ro

i ri fi gi

1 r1 1 −q1

2 r2 ±1 ±q1 − q2

3 r3 ±1 ±q1 ± q2 − q3
...

...
...

...
j rj ±1 ±q1 ± q2 ± . . .− qj

j + 1 rj ±qj+1 1± qj+1(±q1 ± q2 ± . . .− qj)
...

...
...

...
k rk fk gk
...

...
...

...
o ro fo go

o + 1 0 fo+1 go+1.

Since ro = pfo + ago, it follows that:

if (ro = 1) then
x = fo, b = go, and a−1 mod p = go mod p,

if (ro = −1) then
x = −fo, b = −go, and a−1 mod p = (−go) mod p.

It is the last step of the proof that Left-shift algorithm computes classical modular inverse.
Finally, we take note of the principal features of the Left-shift algorithm from the point of
view of the presented proof. The algorithm employs two’s complement code for additions
or subtractions. Therefore, the test whether an addition or subtraction is to be performed

17

becomes a simple sign test. If the signs of both operands are equal, we subtract one from
the other and in the opposite case we add both operands. Equations in (6) respect this
rule when using absolute values of operands. According to Lemma 3.2, successive values
ri of remainders decrease in such a way that p > a > |r1| > |r2| > · · · |ro|.

The selection of operands which will be rewritten with a new value of the computed
remainder is based on a simple test. The write is performed into the operand which needs
more bits for its binary representation. This fact is respected in (6) by the value qi. If
qi = 1, the write is into one of operands without respect on their absolute values. This
case is demonstrated for remainder rn. The conditions given by inequalities of Lemma
3.2 for rn are fulfilled, too. Hence it holds p > a > |r1| > |r2| > · · · > |rn−1| > |rn| >
|rn+1| > · · · > |ro|.

4 Conclusion

In the first part of the presented paper a modular system based on the residual number
system for solves a set of linear equation s exactly was proposed. The method of calcu-
lation and its algorithms on the whole were solved with regard to their implementation
for a hardware parallel SIMD architecture of the modular system. In the design their
efficiency was stressed, which determined also the simplicity of the parallel architecture.
Both rounding and truncation errors were excluded from the calculation.

In the second part a new algorithm (Left-shift algorithm) for classical modular inverse
was presented and its HW implementation was proposed. A mathematical proof that the
proposed algorithm really computes classical modular inverse was performed. Computa-
tion of the modular inverse using the new algorithm is always faster and in the case of
long words at least twice faster than other algorithms currently in use. The principles
of the presented algorithm are used in a modular system for solving systems of linear
equations without rounding errors [14, 15].

References

[1] ”ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point Arithmetic”,
http://grouper.ieee.org/groups/754/.

[2] B. Bruner, A. Curiger, M. Hofstetter, ”On Computing Multiplicative Inverse in
GF(2m)”, IEEE Trans. Computer, vol. 42, pp. 1010–1015, 1993.

[3] J. D. Dworkin, P. M Glaser, M. J. Torla, A. Vadekar, R. J. Lambert, S. A. Vanstone,
”Finite Field Inverse Circuit”, US Patent 6,009,450, Dec. 28, 1999.

[4] I. Z. Emiris, V. Y. Pan, Y. Yu, ”Modular Arithmetic for Linear Algebra Computa-
tions in the Real Field”, J. Symbolic Computation, vol. 26, pp. 71–87, 1998.

[5] R. T. Gregory, E. V. Krishnamurthy, ”Methods and Applications of Error-Free
Computation”, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.

[6] A. A. Gutub, A. F. Tenca, Ç. K. Koç, ”Scalable VLSI Architecture for GF(p)
Montgomery Modular Inverse Computation”, Proceeding of the IEEE Computer
Society Annual Symposium on VLSI, 2002.

18

[7] N. J. Higham: ”Accuracy and Stability of Numerical Algorithms, SIAM, PA, 1996.

[8] J. A. Howell, R. T. Gregory, ”An algorithm for solving linear algebraic equations
using residue arithmetic I-II”, BIT, vol. 9, no. 3, 4, pp. 200–224 and 324–337, 1969.

[9] B. S. Kaliski Jr., ”The Montgomery Inverse and Its Application”, IEEE Transaction
on Computers, vol. 44, no. 8, pp. 1064–1065, 1995.

[10] D. E. Knuth, ”The Art of Computer Programming 2 / Seminumerical Algorithms”,
Addison-Wesley, Reading, Mass. Third edition, 1998.

[11] R. Lórencz, ”New Algorithm for the Classical Modular Inverse”, Proc. of Workshop
on Cryptographic Hardware and Embedded Systems – CHES, August 13-15, 2002,
Redwood Shores, CA, USA, Springer-Verlag ’LNCS, vol. 2523’, pp. 57–70, 2002.

[12] R. Lórencz, ”Architecture for Generating the Multiplicative Inverse over a Finite
Field GF(p)”, Patent No. 294898, 2005, Czech Republic.

[13] R. Lórencz, C. Reckleben, K. Hansen, ”A novel Extraction Method for BJT-
Parameters”, Journal of Electrical Engineering , vol. 51, no. 1–2, pp. 21-29, 2000.

[14] R. Lórencz, M. Morháč, ”Modular System for Solving Linear Equations Exactly,
II. Hardware realization”, Computers and Artificial Intelligence, vol. 11, no. 5, pp.
497–507, 1992.

[15] M. Morháč, R. Lórencz, ”Modular System for Solving Linear Equations Exactly,
I. Architecture and Numerical Algorithms”, Computers and Artificial Intelligence,
vol. 11, no. 4, pp. 351–361, 1992.

[16] M. Morháč, R. Lórencz, ”Architecture of Processor Unit”, Architektúra procesorovej
jednotky, Úřad pr̊umyslového vlastnictv́ı, 1987, Patent 257355.

[17] J. C. Nash: ”Compact Numerical Methods for Computers, Linear Algebra and
Function Minimisation”, Adam Hilger, Bristol and New York, 1990.

[18] M. Newman: ”Solving exquations exactly”, National Bureau of Standarts, 71B, pp.
171-179, 1967.

[19] K. H. Rosen, ”Elementary Number Theory and Its Applications”, Addison-Wesley
Publishing Company, 1993.

[20] G. W. Stewart, J. Sun: ”Matrix Perturbation Theory”, Academic Press, Boston,
1990.

[21] G. Villard, ”Exact parallel solution of linear systems”, In J. Della Dora and J.
Fitch, editors, Computer Algebra and Parallelism, New York, Academic Press, pp.
197–205, 1989.

[22] Z. Yan, D. Sarwate, ”New Systolic Architectures for Inversion and Division in
GF(2m)”, IEEE Trans. on Computers, vol. 5, no. 11, pp. 1514–1519, 2003.

[23] D. S. Watkins: ”Fundamentals of Matrix Computations”, J. Willey, N.Y., 1991.

[24] Ç. K. Koç, A. Güvenç, B. Bakkalog̃lu, ”Exact Solution of Linear Equations on
Distributed-Memory Multiprocessors”, Parallel Algorithms and Applications, vol. 3,
pp. 135–143, 1994.

19

Ing. Róbert Lórencz, CSc.

Date and place of birth: August 10, 1957 in Prešov, Slovak Republic

Affilation: Czech Technical University in Prague, Faculty of Electrical
Engineering, Department of Computer Science and Engineering

Postal address: Karlovo náměst́ı 13, 121 35 Praha 2, Czech Republic

E-mail address: lorencz@fel.cvut.cz

Education:
1981 – Ing. (M.S.) at Czech Technical University, Faculty of Electrical Engineering
1991 – CSc. (Ph.D.) at Institute of Measurement Science, SAS

Brief chronology of employment:
1982 – 1983 Research worker Nuclear Center, Charles University
1983 – 1990 Research worker Institute of Physics, SAS
1991 – 1995 System analyst Research Center, Škoda Auto
1995 – 1998 Assistant professor FEEI, Technical University of Košice
since 1998 Assistant professor Department of Computer Science, CTU FEE

Stages and study leaves:
1985 Study stay Collage on Microprocessors, ICTP Terst
1990 Study stay Gesellschaft für Schwerionenforschung, Darmstadt
1990 – 1991 Guest researcher Ludwig-Maximilians-Universität, München
1996 – 1998 Guest researcher Deutsches Elektronen-Synchrotron, Hamburg

Teaching experience:
Lectures: since 2001 Computer Architecture

2001 – 2003 Special Architectures
2001 – 2003 Design of Microcomputer Systems
2002 – 2004 Machine Oriented Languages
since 2002 Applied Numerical Mathematics
since 2004 Machine Code and Data

Supervising of graduate students: 7 successful graduated (6 M.S., 1 B.S.) students
Supervising of Ph.D. students: currently 7 Ph.D. (5 supervisor, 2 supervisor specialist)

students

Publication activity:
Over 55 journal and conference papers, 27 SCI citations, and 2 patents.

Main grant support:
Research in the Area of the Prospective Information and Navigation Technologies, since
2005.

Research activities:
Head of research group Applied Numerics and Cryptography

Research areas:

Numerical algorithms based on residual arithmetic for error-free computation and com-
puter graphics algorithms. Methods of parameter extraction. Efficient algorithms for
elementary arithmetic operations in GF(p) and GF(2m) suitable for hardware design of
accelerators used in cryptography and numerical computations.

20

