
České vysoké učení technické v Praze
Fakulta jaderná a fyzikálně inženýrská

Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Ing. Martin Kropík, CSc.

Software pro systémy důležité z hlediska jaderné bezpečnosti

Software for Systems Important to Nuclear Safety

Summary
The lecture deals with software for systems important to nuclear safety. The
computer based systems are utilized in such cases at present. The quality and
reliability of computer based systems is given not only by the quality of the
hardware, but also of the software. The lecture provides recommended
methodology of software development for systems important to nuclear safety.
To prepare this lecture, the author utilized his experience of proper standards,
lectures at the university, and activities during the upgrade of the VR-1 training
reactor control and safety system.

The three fundamental principles of high quality software assurance – fault
avoidance, fault detection and fault tolerance are mentioned and explained in the
first part of the lecture. The next part deals with the software life cycle. The
software life cycle consists of the following phases - requirements, design,
coding, verification, hardware/software integration, validation, operation and
maintenance. The requirements represent a basis for software development. The
requirements have to be correct, complete, consistent and unambiguous. During
the software design, the software requirements are analyzed, the software
specification is prepared, and algorithms and data structures are designed.
Coding converts the software design into a real program in a programming
language. Coding methods and techniques are shortly discussed in the lecture.
Verification checks that all activities and demands of each software life cycle
phase were successfully accomplished. Typical verification aims, methods and
tools are addressed in the lecture. The next software life cycle phase is
hardware/software integration, where the hardware and software modules are
assembled, the software is loaded into the hardware and the integrated system is
tested. The purpose of validation is to check that the integrated system satisfies
the given requirements. The validating system is checked through the simulation
of input signals to represent normal operation and accident conditions. The
operation phase then includes all activities connected with the commissioning
and the operation of the system. During the maintenance phase, software
modifications are carried out.

The following chapter describes the configuration management, which is
important part of the software development and production. It defines the
organization of the project, identification of items, secure storage of developing
software, tools and documents, change control procedures and revision control.

The final chapter studies the defense against software common cause failure
and diversity. It discusses different methods to decrease danger of common
cause failure, further benefits and drawbacks of diversity as a protection against
common cause failures.

 2

Souhrn
Přednáška se zabývá programovým vybavením software pro systémy důležité
z hlediska jaderné bezpečnosti. Počítačové systémy jsou v současnosti stále
častěji používány v takových systémech. Jakost a spolehlivost počítačových
systémů je určována nejen jakostí a spolehlivostí technického vybavení
(hardware), ale i programového vybavení (software). Přednáška seznamuje
s doporučenou metodikou pro vývoj software systémů důležitých z hlediska
jaderné bezpečnosti. K její přípravě využil autor zkušenosti získané studiem
příslušných norem, z přednášek na vysoké škole a z činností při inovaci
bezpečnostního a řídicího systému školního jaderného reaktoru VR-1.

První část přednášky zmiňuje a vysvětluje tři základní principy pro zajištění
vysoké jakosti software – vyloučení chyb, detekce chyb a tolerance k chybám.
Další část se zabývá životním cyklem software. Životní cyklus se skládá
z následujících fází – požadavků, návrhu, kódování, verifikace, integrace
hardware/software , validace, provozu a údržby. Požadavky představují základ
pro vývoj software. Požadavky musí být správné, úplné, konzistentní a
jednoznačné. Během fáze návrhu software jsou analyzovány požadavky, je
připravena specifikace software, jsou navrženy algoritmy a datové struktury.
Fáze kódování převádí návrh software do skutečného programu
v programovacím jazyce. Metody a techniky kódování jsou v přednášce stručně
diskutovány. Verifikace pak ověřuje, zda všechny činnosti v každé fázi
životního cyklu byly úspěšně vykonány a příslušné požadavky splněny. Typické
cíle, metody a nástroje verifikace jsou uvedeny v přednášce. Další fází životního
cyklu software je integrace hardware/software, během níž jsou sestaveny
hardwarové a software moduly, software je nahrán do hardware a integrovaný
systém je vyzkoušen. Účelem validace je ověřit, že integrovaný systém
vyhovuje stanoveným požadavkům. Vylisovaný systém je testován simulacemi
vstupních signálů za podmínek normálního provozu i havarijních situací. Fáze
provozu pak zahrnuje všechny aktivity v souvislosti s uvedením do provozu a
provozováním systému. Během fáze údržby jsou prováděny změny v software.

Další kapitola se zabývá správou konfigurace, která je důležitou součástí
vývoje a produkce software. Definuje organizaci projektu, identifikace položek,
bezpečné zálohování software, nástrojů a dokumentů, postupy pro správu změn
a revizí.

Závěrečná kapitola se zabývá ochranou proti chybám ze společné příčiny a
diverzitou. Poskytuje rozbor různých metod ke snížení nebezpečí vzniku chyb ze
společné příčiny, dále pak výhody a nevýhody diverzity jako ochrany proti
chybám ze společné příčiny.

 3

Keywords: software quality and reliability, software life cycle,
verification, validation, configuration management, common
cause failure, diversity

Klíčová slova: jakost a spolehlivost software, životní cyklus software,
verifikace, validace, správa konfigurace, chyba ze společné
příčiny, diverzita

 4

Contents

1. INTRODUCTION.. 6

2. BASIC PRINCIPLES .. 6

3. SOFTWARE LIFE CYCLE ... 7

3.1. REQUIREMENTS... 8
3.2. DESIGN.. 9
3.3. CODING... 9
3.4. VERIFICATION ... 10
3.5. INTEGRATION HW/SW ... 12
3.6. VALIDATION.. 13
3.7. OPERATION AND SYSTEM TRAINING .. 13
3.8. MAINTENANCE.. 13

4. CONFIGURATION MANAGEMENT ... 14

4.1. ORGANIZATION ... 14
4.2. IDENTIFICATION OF ITEMS ... 14
4.3. SECURE STORAGE.. 15
4.4. CHANGE CONTROL PROCEDURES ... 15
4.5. REVISION CONTROL... 15

5. DEFENSE AGAINST SOFTWARE COMMON CAUSE FAILURE
AND DIVERSITY ... 15

6. CONCLUSION... 17

REFERENCES .. 18

CURRICULUM VITAE ... 19

 5

1. Introduction
Electronic parts of nuclear installation systems that are important to safety have
recently been designed as hardwired electronics. However, computer based
safety systems are already used at present. On the one hand, performance,
flexibility, testability and economic factors are a great advantage of such
systems. On the other hand, the quality and reliability of these systems is given
not only by the quality and reliability of the hardware (HW), but also by the
quality and reliability of the software (SW). Thus, software is playing an ever
increasing role in the design, manufacture and operation of nuclear installations,
and the potential of error and poor quality is real.

Because of problems with assessing the qualitative and quantitative reliability
of the software, there is a lack of confidence on the side of licensing authorities.
The aim of software engineering is therefore to optimize the quality of software
products and to find generally acceptable methods to determine the quantitative
reliability of the software.

2. Basic principles
Safety has to have priority over availability in the sense that if the two goals
conflict then availability should be sacrificed in order to maintain safety.
However, both safety and availability are closely correlated to the quality and
reliability of the software. Three basic principles to assure high quality and
reliability of software are further mentioned.

The first principle in this respect is fault avoidance through good software
engineering and quality assurance throughout the complete lifecycle of the
software. The second principle is fault detection through a thorough validation
and verification activity. A third principle, which should also be considered, is
fault tolerance, i.e. the target system should be designed so that a failure will not
jeopardize safety. This could be made so that the failure has no effect, e.g.
through redundancy, or by bringing the system into a safe state, or into a state of
reduced risk, in case of a failure. Despite the effort to increase the reliability of
safety critical software, the software itself and the environment should be
continuously monitored to intercept hazards before they convert into accidents.
This principle is based on the recognition of the fact that no presently available
technology can guarantee absolute safety.

The software should be designed using well-known and widely accepted
design techniques. These techniques could either be supported by computer-
based solutions, e.g. CASE (Computer Aided Software Engineering) tools
supporting different design techniques, or they could be just theoretical
techniques with no computer support. Within the same project, the number of
techniques should be limited to just a few. Preferably only one method should be
used throughout the design. What could be convenient is to use two different

 6

methods for top level design and detailed design respectively. The top level
design methods could be for example of graphical nature, while more detailed
level methods could utilize the language sensitive method.

In order to meet the overall system reliability requirements, the computer
system software shall continuously supervise both itself and the hardware. No
single failure shall be able to block directly or indirectly any function dedicated
to prevent the release of radioactivity. Those parts of the memory that contain
code or invariable data shall be monitored to prevent any changes. The software
for systems important to nuclear safety shall be designed so that essential
functions of the whole system are testable during the operation of the nuclear
installations. The system self-checking shall not adversely affect the intended
system functions.

Before starting the software development, some necessary documents should
be prepared - at least “Quality Assurance Plan“, “Verification and Validation
Plan“ and “Configuration Management Plan”. The first document specifies the
methodology of the software development with respect to high quality and
reliability requirements for the safety critical software. The second one defines
the activities of verification and validation during the whole software life cycle.
The third one deals with the identification of product items, the control and
implementation of changes, secure storage and revision control. All the activities
described in these plans are approached later in this lecture.

3. Software life cycle
The software life cycle is a period of time that starts when a software product is
conceived and ends when the product is no longer available for use. The
software life cycle consists of the following phases, which are to some extent
self-contained, but will depend on other phases as well. These phases are
informally recognizable by specific activities pertinent to them.

The list of the software life phases is as follows:

• requirements,
• design,
• coding,
• verification (V&V),
• integration HW/SW,
• validation (FAT, SAT),
• operation,
• maintenance.

Concerning the software life cycle, it is necessary to mention that in the earlier
documents the term verification was used for checking the activities during each
software life cycle phase and validation was used for testing the integrated
system usually by simulated input signals. In later documents, the earlier

 7

verification is called verification and validation (V&V), and for integrated
system testing the abbreviations FAT (factory acceptance tests) and SAT (site
acceptance tests) are used. In the following text, the individual phases of the
software life cycle will be discussed in more detail.

3.1. Requirements
Software requirements are a basis for further development. Software
requirements are derived from the computer system specification. The computer
system specification is a description of the combined hardware/software system
and states the objectives and functions assigned to the computer system. The
requirements present an expansion of the functions assigned to the computer
system to be implemented. Functions dedicated to prevent the release of
radioactivity in accident conditions shall be explicitly described. The software
requirements describe the product, not the project. They should require what
must be done, not how to do it.

The software requirements should have the following attributes; they should
be:

• correct - the requirements shall correctly express the intention with the target
system, it should also be based on a correct interpretation of the nuclear
installation and environment,

• unambiguous - there should be only one possible semantic interpretation of
each requirement; if the terminology of real world items has multiple
meaning, a glossary with the precise use of terms is necessary; the use of a
formal language can be used to reduce ambiguity,

• complete - no requirement or need of the customer is overlooked; for every
possible set of inputs, a system response should be clearly defined; all
referenced terms must be defined, all referenced tables, figures, sections, etc.
must be present in the document,

• consistent - there should be no internal contradiction between individual
requirements, and terms must not have different meanings at different places
within the document,

• verifiable - it should be possible to verify the requirements versus the
computer system specification, this attribute is facilitated by using formal
specification methods,

• modifiable - the requirements should ease later modifications, redundant
information may be necessary, even if it complicates the modification; a
computerized support system would facilitate modifiability,

• traceable - the origin of each of the requirements should be clear.
Utilization of formal methods supports the fulfillment of the above mentioned
points.

 8

3.2. Design
In the design phase, the software requirements are analyzed, the software
specification is prepared, and algorithms and data structures of the software are
designed and tested. The software should be divided into modules. The design
should be made in top-bottom manner, from more complex to specific units. The
software needs to fulfill demands for modularity and testability. Minimal global
variables, proper input arguments and local variables should be used.

Program modules should perform exactly one function, have exactly one exit
and have a reasonable number of branches. Consistent naming conventions for
constants, variables, functions and program modules should also be introduced.
Structures of the data are an important aspect from a reliability point of view.
Tricky data structures should be avoided, and also items like dynamic data
allocation should be avoided if possible, since the verification of the correctness
of such structures is very difficult.

When communication between programs or computers is required it is very
important to use standardized communication facilities, home made solutions
should be avoided if possible. Safety critical applications should, if possible, be
isolated from external communication. It is important to consider both the
possibility of unauthorized access into the safety critical applications and the
possibility of performance degradation due to increased network traffic.

3.3. Coding
Coding converts the software design into a real program in a programming
language. The coding process should be carried out in bottom-top manner, from
specific low level modules to the more complex ones.

Suitable programming languages with reliable compilers should be used. High
level programming languages are strongly recommended. The languages should
be completely and unambiguously defined, otherwise the use of the languages
shall be restricted to completely and unambiguously defined features. Within a
single project, the number of programming languages used should be
minimized, and low level languages (e.g. assembly language) should be used
only in specific, typically time critical parts of the software project.

Relatively strict guidelines should be closely followed when producing code.
One should have in mind that the code should be easy to read for an outsider,
which means that the code must be fairly simple.

The following should be avoided:

• tricky programming,
• fancy programming,
• code compression, etc.

Encouragement should be given to provide:

• easily understandable code,

 9

• use of strict naming conventions for variables,
• modularity,
• initiation of all variables, etc.

The code should be properly commented, making sure that one can easily
understand it. A heading should be provided for all programs, functions or
subroutines, containing, at least, the following information:

• module name,
• short description,
• reference,
• version number,
• language,
• file name, load file,
• target computer and operating system,
• compiler used,
• modification history.

The software modules should have satisfactory comments, their style and
conventions are uniform throughout the whole project.

3.4. Verification
Each phase of the software life cycle should be finished by a verification (V&V)
process to prove that all activities and requirements for this phase were
successfully fulfilled. No method, even not formal proofs, can guarantee
correctness with 100 % confidence. Verification can actually only show the
presence of faults, it cannot prove the complete absence of faults. However, the
more one search for faults, the higher the probability to find all residual faults.

A detailed “Verification and Validation Plan” of the V&V activities should be
established at an early stage in software development. This plan should describe
all the planned V&V activities with respect to attributes as:

• methods,
• purpose,
• importance for the safety assessment,
• criteria of fulfillment,
• documentation of activity results.

The V&V plan should be observed for all V&V activities, and result in a V&V
document that forms one basis for the safety assessment.

To verify the correctness of the target system, it is necessary to have a basis to
check it against. The essential basis for the verification is the specification
(requirements). A correct, complete and unambiguous specification is therefore
a necessary requirement for the verification. Notice that not only the functional
requirement, but also the safety requirements must be fulfilled by the target

 10

system. A verification of the specification should also be made. A check on
completeness and consistency should be possible if the specification
requirements are properly written.

There are several complementary methods for V&V. They can be divided into
some main classes:

• static analysis,
• testing,
• formal verification,
• real-time aspects.

Static analysis is defined as a process of evaluating a computer program without
executing it. Static analysis can be performed at various stages in the
development process and can therefore be applied during inspections and
walkthroughs. It can, however, also be applied to the final program system. One
objective of the static analysis is to compare the final program with the
specification. Static analysis can be used to check that the specified coding is
observed. The static analysis can also reveal faults in the program, as e.g. use of
undefined variables, defined variables never used, eternal loops, etc. Another
use of static analysis is to compute software metrics. Software metrics is a set of
measurements that can be performed on the computer programs in the target
system. Typical measurements are: size of program, number of subroutines,
maximum size of subroutines, number of conditions, number of loops, etc. Such
measurements can be very useful to assess the complexity of the program, the
vulnerability to errors, and the amount of work needed to perform the safety
assessment. In many cases, there exist computerized tools that perform such
software measurements. Reversed engineering and symbolic execution may be
used to show correspondence between the specification and the implemented
code of the target program. If computerized tools are used for this activity, it
would be advantageous, but not necessary, that these tools are made independent
of the production of the target system.

Testing is the execution of the program with selected testing data to
demonstrate that it performs its task correctly. Ideally, the test data should be
selected so that all potentially residual faults should be revealed. The testing is
mandatory for any program. The amount of testing depends upon the criticality
of the program. The optimal test strategy is the one which maximizes the
probability to reveal all possible residual program faults. Various test strategies
are: random testing, systematic testing based on specification, systematic testing
based on program structure, testing data reflecting a real process, testing with
special emphasis on safety critical functions.

An aspect of safety critical systems that must be particularly focused is the
real time aspect. One must verify that the system can fulfill its tasks within
specified time limits. Both static analysis and statistical testing can be used in

 11

this respect. The use of interrupts should be minimized. However, if interrupts
are used, one must show that their usage and masking during time and data
critical operations are checked for correct operation in-service. One should also
check that all inadvertent activation of unused interrupts are handled in a fail
safe way. A particular problem occurs if the target system consists of a set of
distributed processors operating concurrently. There are certain properties such a
system should have, and some potential problems one should look out for:
correct communication between different modules, proper synchronization and
time sequencing, potential deadlocks checking, correct use of shared resources
and content of one module is protected against the destruction by others.

Any faults, bugs and errors found during this phase should be carefully
documented in the record of verification activities.

3.5. Integration HW/SW
The process of hardware/software integration is the combining of verified
hardware and software modules into a system that is capable to perform
specified functions. This process consists of the following parts:

• assembling hardware modules according to the system design drawing,
• assembling software module by a linkage processor,
• load the software into the hardware,
• verifying by testing that the hardware/software interface requirements have

been satisfied and that the software is capable of operating in this particular
hardware environment.

Before the integration of HW/SW, the “System Integration Plan” shall be
prepared that specifies the standards and procedures to be followed in the
HW/SW integration and document those provisions of the overall quality
assurance plan that are applicable to the system integration. The “System
Integration Plan” shall establish a library of SW and HW modules as a means of
system configuration control. This library shall provide revision control for all
HW and SW modules to be used in the system.

The system verification assures that the verified HW and SW modules have
been properly integrated into the system and that the HW and SW are
compatible and performs as required. The system shall be as complete as is
practical for this testing. In the process of verification, the certain aspects of
individual hardware and software modules may be better tested at the integrated
system while, on the other hand, it is not feasible to test all functional
requirements of individual modules at the system level. The result of the
integrated system verification shall be documented in the “HW/SW Integration
Report”.

 12

3.6. Validation
The purpose of validation (FAT, SAT) is to check that the integrated hardware
and software satisfies the defined requirements. The validating system shall be
exercised through static and dynamic simulation of input signal present during
the normal operation, anticipated operational occurrences and accident
conditions requiring the system action. Each reactor safety function should be
confirmed by representative test of each trip or protection parameter, both singly
and in combination. The tests should cover the signal range, the voting or other
logic and logic combinations. The tests should ensure that accuracy and
response times are confirmed, and that correct action is initiated for any
equipment failure or failure combination. At the end of the validation process, a
computer system validation report shall document the activities and the results
of the validation process.

3.7. Operation and system training
Operation means all activities regarding the commissioning and the operation of
the system. It concerns the computer system and the staff (operators). A test
program shall be provided to verify the integrity of the installed digital computer
based safety critical system with respect to response, calibration, functional
operation and interaction with other systems. In the end, a commissioning, i.e. a
test report presenting test results and conformity to acceptance criteria, shall be
established

The software system being brought to approval will, after the final
implementation at the site, be handled either by technical staff, operated by
operators, or probably in combination of both of them. From a safety point of
view, the quality of the software system is obviously extremely important, but
also users’ competence can have an impact on overall safety.

Therefore, a training program as part of the project should be developed and
arranged for the personnel who will use the system, to ensure that they are able
to handle the system in the best way. Proper system operation and user manuals
must of course be available as an integral part of the software system.

Depending on the nature of the system, in some cases simulator training
should be recommended. This is probably one of the best ways how to perform
system training altogether.

3.8. Maintenance
The reason for maintenance may be:

• anomaly report,
• change of functional requirements after delivery,
• technological evolution,
• change in operating conditions.

 13

During the maintenance, a modification request on the software can occur.
However, the modification demand may also be requested during the
development phase because of functional requirement changes or anomaly
report as a result of tests. To deal with software changes, the following items
shall be examined: technical feasibility, impact upon hardware (e.g. memory
extension), impact upon software, impact upon performance (e.g. speed,
accuracy) and set of documents which is necessary to review. If the change of
the software is accepted, a scope of changes to be introduced shall be
investigated. For a change in the software functional specification, the whole
software development process for any part of the system impacted by the change
shall be re-examined. A change during the development phase or maintenance
after delivery shall be reviewed in terms of its potential impact upon
corresponding lower levels. After the implementation of the modification, the
whole verification and validation process shall be performed again according to
the software modification analysis. A software modification report shall sum up
all the actions made for modification purposes.

4. Configuration management
The “Configuration Management Plan” should document the method to be used
for identifying software product items, controlling and implementing changes,
and recording and reporting the change implementation status. The plan should
be applied to the entire software life cycle and is especially important in the
environments where software could have an impact on safety measures.

The “Configuration Management Plan” should be used both for software and
the associated documentation. By applying configuration management both to
software and documentation, one is assured that both are being updated in
parallel and coincide way at any time.

There are several key items in a “Configuration Management Plan”, and some
of them will be treated below.

4.1. Organization
It is very important to define an organization around the configuration
management, stating persons and their dedicated responsibilities. The persons
being responsible for the configuration handling have an independent status to
those producing software and documentation in the project, and should typically
report to the project manager.

4.2. Identification of items
The decision about which items have to be placed under configuration control
must be decided at an early stage within the project. The items of the
configuration management should be documents (e.g. system requirements and
design documents, verification and testing documents, system and user manuals,

 14

maintenance documents) and software (e.g. all software produced according to
the specification, special test software, standard software/system software , pre-
existing software).

4.3. Secure storage
Documents and software being placed under configuration control must be
stored in a safe place. With a safe place one means for instance: backups are
taken, diverse backups are stored at different sites, and security measures are
implemented to prevent accidental or intentional modification of software or
documents by unauthorized personnel, and correct version labeling is assured.

4.4. Change control procedures
Once software or documents are being placed under configuration control,
changes to these items have to be made according to strict procedures. The
reasons for changes may vary. Typical examples are detection of errors,
functional improvements, additional functions, and implementation
improvements. The request for changes may also come during a project and after
the software delivery, i.e. in the maintenance period. All change control requests
must be registered by the configuration management organization and a decision
must be made to which change control level the request should be brought. It is
important to note that certain changes in a software product could lead to the
consequences that should be evaluated and submitted for approval.

4.5. Revision control
A software product may consist of very many integrated parts. It is dependent
upon heterogeneous products, whose typical examples are: operating system,
version a.a; compiler, version b.b; library, version c.c, etc. It is quite obvious
that there is a need for the configuration management organization to keep a
track, not only of the specifically produced software, but also of the
environmental software products. Complete revision control procedures stating
how to cope with newly released software products must be established and
strictly observed.

5. Defense against software common cause failure and diversity
The rationale for the defense against software common cause failure (CCF) is
that any software fault will remain in the system or channel concerned until
detected and corrected, and will cause failure if an adverse signal trajectory
challenges it. If two or more systems or channels contain the fault, and they are
exposed to adverse signal trajectories within a sensitive time period, both (or all)
systems or channels will fail. The potential of software CCF should therefore be
considered during the design.

 15

All CCF occurring during the operation of an I&C system are the
consequence of human errors of some kind made during the different phases of
the life cycle of the system. Human errors made before the software design start
lead to faults in requirements and potential system failures against which
software engineering alone cannot provide a defense. Due to such errors, CCF
are defined here as I&C system CCF. Human errors made during the software
engineering process lead to software faults and potential system failures which
are defined here as software CCF.

A basic defense against software CCF is the production of software to meet
correct requirements with as few faults as practicable, and the demonstration
that this has been achieved.

Statements of requirements and software specifications shall be regarded as of
special importance in the control of CCF. Independent verification of
requirements and software specifications and the use of formal methods provide
the defense against faults caused by human factor during formulation of
requirements and software specification processes. The formulation of
requirements shall be reviewed by a different technical group than the
originators for consistency, accuracy, completeness and freedom from
ambiguity.

If the analysis shows that two systems include common modules of software,
which can be subjected to the same signal trajectories, those modules should
perform correctly for those trajectories. The program start, cycle, operating
system, services and communication services shall be independent of signal
trajectories.

Abnormal hardware conditions, hardware failures, abnormal nuclear
installation conditions and events which might cause software CCF should be
reviewed and the requirements and design arranged so that simultaneous failure
of redundant channels or functional paths with common software is prevented.

The procedures and tools used during the design, development and coding of
the software for configuration control and software built should be
administratively controlled and managed, taking into consideration the
possibility of deliberate or accidental corruption. Changes should be formally
controlled only after documents have reached a given level of approval.

Conditions of software sabotage, virus or software bomb planting able to
cause software CCF should be prevented by suitable methods (isolation of the
system from communication access, use of write protected memory for software,
administrative control and access control, etc.).

The following methods may be used to provide defense against the effects of
failures or to reduce the likelihood of failures occurring simultaneously:

• design which makes potential software failures behave safely or limits their
effects,

 16

• defenses for revealed failures of memory violation, arithmetic exception,
overwriting, etc.,

• design of channels or systems so that a coincident failure of two channels or
systems is very unlikely due to demonstrated differences in the trajectories
affecting the systems identified above,

• design of channels or systems using asynchronous operation; this may be
used to show defense against the same processors in different channels being
subjected to identical trajectories at the same time,

• monitoring of software tasks and cycle to detect unrevealed inhibition of
systems caused by a software CCF, which stops operating tasks; processes
such as deadman timers with independent alarms should be considered.

Diversity should be utilized to improve the defense of software against CCF.
Diverse software features include functional diversity, i.e. different functions
used to achieve the same safety goal, and software diversity. Diversity at the
system level can include utilization of different basic technology, such as
computers versus hardwired design or different types of computers, hardware
modules and major design concepts, or different classes of computer technique
such as PLCs, microcomputers, or minicomputers. Differences should be
implemented in design an implementation methods. Different programming
languages, compilation systems, libraries, tools, programming techniques,
system and application software and data structures can be utilized to enhance
the diversity.

Diversity should be also applied on aspects of management approach – two
designs following deliberate dissimilar development methods, separation of
design teams, restriction of communication between teams, formal
communication for resolution of ambiguities in requirements, use of different
logic definition processes, differences in documentation methods and use of
different staff.

On the one hand, utilization of the diversity will improve the protection
against CCF. On the other hand, the diversity has also some drawbacks.
Examples of these drawbacks are greater complexity, increase risk of a spurious
actuation, more complex specification and design, maintenance and modification
problems.

6. Conclusion
This lecture contains recommended methodology for the development and
design of high quality and reliability software utilized in systems important to
nuclear safety. The basic principles for the software development, the software
life cycle and requirements on its individual phases were defined and discussed.
The configuration management and defense against common cause failures were
approached.

 17

A lot of the above described methodology has been used at the Department of
Nuclear Reactors, FNSPE CTU in Prague during the safety and control system
upgrade of the VR-1 training reactor.

References
[1] Neufelder, A. M.: Ensuring Software Reliability, Marcel Dekker, Inc., New

York, 1993

[2] Dahll, G., Kvalem, J.: Guidelines for Reviewing Software in Safety Related
Systems, SKI Report 94:9, 1994

[3] Software for Computers in the Safety Systems of Nuclear Power Plants,
IEC-880, Geneva, 1986

[4] Draft IEC880-1: Software for Computers in the Safety Systems of Nuclear
Power Plants, as a first supplement to IEC-880, Geneva, 1997

[5] Standard Criteria for Digital Computers in Safety Systems of Nuclear
Power Generating Stations, IEEE P-7-4.3.2, 1994

[6] Review Guidelines on Software Languages for Use in Nuclear Power Plant
Safety Systems, NUREG/CR-6463, 1996

[7] Guidelines for the Use of the C Language in Vehicle Based Software,
MISRA Association, 1998

 18

Curriculum Vitae

Ing. Martin Kropík, CSc.
Born: August 22, 1963 in Roudnice nad Labem
Affiliation: Czech Technical University (CTU) in Prague
 Faculty of Nuclear Sciences and Physical Engineering
 (FNSPE)
 Department of Nuclear Reactors
Postal address: V Holešovičkách 2, CZ 180 00 Prague 8, Czech Republic
E-mail address: kropik@troja.fjfi.cvut.cz

Education:
1986 M.S. (Ing.) at the Department of Physical Electronics, FNSPE

CTU in Prague
1993 Ph.D. (Csc.) at the Departments of Physical Electronics and

Nuclear Reactors, FNSPE CTU in Prague
Professional career:

1987-1991 postgraduate student, Department of Physical Electronics, FNSPE
CTU in Prague

1991-1993 researcher, Department of Nuclear Reactors, FNSPE CTU in
Prague

1994-1996 research scientist, Department of Nuclear Reactors, FNSPE CTU
in Prague

since 1996 assistant professor, Department of Nuclear Reactors, FNSPE CTU
in Prague

Scholarships and study stays:

• Institute for Physics and Technology, Braunschweig, Germany, 1985, 1989,
1990, 1994, 1995, 1996

• Queen Mary and Imperial College, London, Great Britain 1994
• Atomic Institute, Vienna, Austria 1995, 1998
• Ruhr University, Bochum, Germany 1999, 2002
• Halden Reactor Project, Halden, Norway, 1997, 2002, 2004
• Brookhaven National Laboratory, Upton, USA, 2004

Research areas:

• control and safety systems of nuclear installations
• quality and reliability of computer systems and software
• digital and microcomputer technology
• programmable logical devices

 19

mailto:kropik@troja.fjfi.cvut.cz

• data acquisition and evaluation,
• nuclear reactor diagnostics and operation

Teaching experience:

• lectures Control and Safety Systems of Nuclear Installations, Fundamentals
of Electronics, Programmable Logical Devices and Computer Control of
Experiments at the Department of Nuclear Reactors, FNSPE CTU in Prague

• advisor of diploma theses (7)
• advisor of Ph.D. students (4)
• training at VR-1 reactor for Czech and foreign students
• lectures and training in IAEA and ENEN courses

Grant projects (solver or co-solver):

• CTU grants (3)
• Czech-Austrian Aktion project
• University promotion grants - FRVŠ (6)
• IAEA grants (2)

Publications:

• over 100 journal, conference papers and research reports

 20

