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SUMMARY 
 

The reconstitution of the history of a fatigue crack growth is based on the 
knowledge of any correspondences between the morphology of crack surface 
and the velocity of crack growth (crack growth rate - CGR).  

The traditional method utilizes striation patches - areas of striations, fine 
equidistant grooves in fracture surface. Striation patches may be recognized and 
evaluated by image analysis methods. A new definition of an ideal striation 
patch was necessary as a basis for an unambiguous algorithm. Two methods of 
automatical striation analysis were developed: a method based on recognition of 
single striation patches, and a method of direct estimation of mean striation 
parameters from the image as a whole. 

The traditional approach cannot be applied when striations are not present or 
visible. For such cases, a new method - textural fractography - has been 
developed. Images of fracture surfaces are studied as image textures - "regularly 
random" image structures. The mezoscopic dimensional area with SEM 
magnifications between macro- and microfractography (about 30 ÷ 500 x) is 
especially suitable. Pre-processing of images is necessary to obtain a 
homogeneous texture. Fractographic information is extracted in the form of 
integral parameters of whole images. Several methods of characterizing 
fractographic image textures have been investigated, tested and brought up to 
practical applicability: application of 2D Fourier transformation, modeling the 
texture as a Gibbs random field, and extraction and analysis of fibre-similar 
bright objects. Image parameters are related to the CGR by means of multilinear 
regression. Results of application on laboratory fatigue tests of stainless steel 
AISI 304L are shown. 

Within fractography, image analysis methods open new possibilities of the 
acquisition of useful information from the morphology of fracture surfaces. 
Simultaneously, they save time of the operator and cost of the analyses by 
transferring the demanding manual work to the computer. The possibility of 
automatic extraction of the information from larger areas increases objectivity of 
the results. 

In order to extract and analyze the fibre structure, special methods of image 
analysis have been developed - the method of tracing fibres and the database-
oriented analysis of a fibre process. 
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SOUHRN 
Rekonstrukce historie procesu růstu únavové trhliny vychází ze znalosti 

vzájemně jednoznačných vztahů mezi morfologií povrchu lomu a lokální 
makroskopickou rychlostí šíření trhliny (crack growth rate - CGR).  

Tradiční metoda je založena na analýze polí striací - oblastí vyplněných 
striacemi, jemnými ekvidistantními žlábky v ploše lomu. Pole striací mohou být 
rozpoznávána a vyhodnocována metodami analýzy obrazu. Požadavek 
algorimizace postupu si vynutil formulovat novou, jednoznačnou definici 
ideálního pole striací. Byly vyvinuty dvě metody  automatické analýzy striací - 
metoda založená na rozpoznávání jednotlivých polí striací a metoda odhadu 
průměrných striačních parametrů pro obraz jako celek.. 

Tradiční postup nemůže být aplikován, jestliže striace v lomové ploše nejsou, 
nebo nejsou viditelné. Pro tyto případy byla vyvinuta nová metoda - texturní 
fraktografie. Obrazy povrchu lomu jsou interpretovány jako obrazové textury - 
"pravidelně náhodné" obrazové struktury.  Zvláště vhodná pro takový přístup jsou 
mezoskopická zvětšení řádkovacího elektronového mikroskopu mezi tradičními 
oblastmi makro- a mikrofraktografie (cca 30 ÷ 500 x).  Obrazy je nutno předzpra-
covat, aby vyhodnocovaná textura byla homogenní. Fraktografická informace je 
vyjádřena integrálními parametry obrazu jako celku. Bylo studováno, testováno a k 
praktické aplikaci dovedeno několik metod vyjádření texturní obrazové informace 
vektorem číselných parametrů: aplikace 2D Fourierovy transformace, modelování 
textury jako Gibbsova náhodného pole a extrakce a analýza světlých objektů 
vláknové povahy. Vztah mezi obrazovými parametry a makroskopickou 
rychlostí šíření trhliny je vyjádřen formou multilineární regrese. Postup je 
dokumentován výsledky aplikace na lomové plochy vzorků z korozivzdorné 
oceli AISI 304L. 

Aplikace metod analýzy obrazu ve fraktografii otevírá nové možnosti 
získávání informací o procesu lomu z lomových povrchů. Tyto metody současně 
převádějí většinu časově náročné rutinní práce na počítač. Tím šetří čas 
operátora a snižují náklady fraktografické analýzy. Možnost vyhodnotit 
automaticky informaci z větších ploch zvyšuje objektivitu výsledků. 

V rámci rozpoznávání a analýzy obrazových vláknových struktur byly 
vyvinuty speciální postupy - metoda stopování vláken a databázově orientovaná 
analýza procesu vláken. 
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1. INTRODUCTION 

Fractography is an irreplaceable source of information on causes and 
mechanisms of fractures in practice. Traditional quantitative fractography 
acquired information especially from photographs of SEM views of crack 
surfaces. Evaluation of fractographic features - counting of them, measurement 
of their dimensions, distances, directions, etc., was done manually. Only strictly 
geometrically defined objects could be taken into account.  

The progress of computers and image analysis methods inspired the 
development of the computer aided fractography. Within the area of traditional 
information sources, it brings especially a more effective mode of the 
fractographic routine. Several applications will be discussed in chapter 2. 
However, application of image analysis opens up qualitatively new possibilities 
of the fractographic analysis. New sources of information can be used and new 
aspects of crack morphology studied. Several methods developed during recent 
years are described in chapter 3.   

The basic task of the quantitative fractography of fatigue failures is the 
fractographic reconstitution of the history of a fatigue crack, i.e., estimation of 
the dependence of the crack development (usually in the form of crack length a 
or of the cracked area) on the number N of loading cycles or blocks in the case 
of laboratory loading, or on the operational time of the structure. The main step 
[17,18] is estimation the course v(a) of the crack growth rate (CGR) along crack 
length a. Then crack growth process a(N) can be reconstituted by integration 
∆N = ∫ da/v(a). 

Specimens of the material are loaded in the laboratory under service 
conditions and the crack growth process is recorded. Fracture surfaces are 
documented by SEM and images are studied to relate some information present 
in the morphology of the crack surface to the macroscopic CGR. So a basis is 
obtained on which an unknown CGR can be estimated from the fracture surfaces 
of real parts.  

 

2. APPLICATION  OF  IMAGE  ANALYSIS  IN TRADITIONAL  
FRACTOGRAPHY - ANALYSIS  OF  STRIATION  PATCHES 

 
2.1 Introductory notes 
 

The traditional quantitative fractography of fatigue failures is based on 
striation patches (Fig.4, 5, 6) and/or beach lines. Striations are fine equidistant 
grooves in the fracture surface [4,17,18,19]. Striation spacing is the most 
valuable characteristic. The ratio between macroscopic CGR denoted v and the 
mean striation spacing s  is a material function D = v/ s  [17,18]. From a known 
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s , CGR can be estimated as ( )v s D s= . 
Within this approach, image analysis methods can be used to recognize 

striations in images of crack surfaces, and to estimate their parameters. A new 
definition of a striation patch linked closely to Fourier transformation will be 
discussed in sect. 2.2. Two methods of estimating striation parameters are 
described in sect. 2.3 and 2.4.  

2.2 The new definition of an ideal striation patch  

Traditionally, a striation patch is understood intuitively as a system of parallel 
strips. Striation vector s (spacing and direction) is measured along a 
perpendicular direction, which, in fact, is often more or less arbitrary (Fig.1a). If 
the plane of projection is not parallel to the plane of a striation patch, the angle 
relations are distorted, and the normal to striations in the image is different from 
the projection of the normal to striations in real space (Fig.1b). To understand 
the striation parameters unambiguously, let us define an ideal striation patch as a 
system of similar space arcs shifted equidistantly in the same direction [6]. 
Then vector of the shifting is the same in the whole patch (Fig.1c), and can be 
used to define the striation vector. Its projection is just the vector of the shifting 
of projected arcs (Fig.1d). Due to this, when following the above definition we 
are less subjective. Of course, real striation patches are not ideal. Assuming a 
model of the ideal striation patch, we estimate parameters of the idealization of 
the given striation patch towards the model. 
  

TRADITIONAL NEW 

 
 
 
 

 a b c d 

s

s'  

s s 

s 
s3 

s1 
s2 

Fig.1: Traditional and new concept of a striation patch: a - the normal to arc striations is 
ambiguous, b - perpendicularity is distorted by projection, c - vector of shifting is 
unique in the whole patch, d - direction of shifting is invariant to projection. 

 
The concept of shifting is closely related to the 2D Fourier transformation 

(FT). It consists in a decomposition of the image into planar waves. The 
spectrum of a system of straight striations contains one peak whose position 
determines the striation vector. The peak of a system of shifted arcs is linearly 
prolonged, and the shifting vector is related to its distance from the origin. The 
example of an application is shown in Fig.2. A striation patch in Al-2024 alloy 
has been scanned in three different positions. FT-based estimates of direction of 
striation vector (vector of shifting) are independent of the direction of 
observation.  
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Fig.2: A striation patch recorded in different tilt. FT-based estimations of the direction 
of striation vector are the same in all cases. 

2.3 The recognition of striation patches 

The method is illustrated in Fig.3 [6]. After binarization, the presence of 
striations is tested in small subareas. Then neighbouring subareas are tested to 
create a striation patch. Finally, found patches are represented by rectangles, 
striation vectors estimated and visually presented to be verified by the operator. 
 

          
a b 

          
c d 

Fig.3: Recognition and analysis of striation patches: a - original image, b - binarization (filter 
Marr + median), c - local analysis of the presence of striations, d - joining rectangular 
areas representing striation patches, estimation the striation vectors.  

2.4 Direct estimation of mean striation parameters 

Usually mean striation parameters from a given area are used. They can be 
found [7] within one image directly from its spectrum (Fig.4). A single peak 
represents patches with similar striation vectors. The weight of peaks zi can be 
expressed so that the mean striation vector can be estimated as i i is s z z=∑ ∑ . 
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Fig.4: The original image, its Fourier spectrum with marked peak areas, and graphical 

representation of estimated mean striation vector.  

3. TEXTURAL FRACTOGRAPHY 

3.1 Introductory notes 

Methods based on striations cannot be used when striations are not visible, 
typically due to corrosion [20,23]. As an alternative, a textural method has been 
developed in our department since about 1990. Structures in images of fracture 
surfaces are studied as image textures. The texture can be broadly defined as a 
random structure of similar elements with some kind of ordering. The main 
problem in fatigue fractography consists in mainly continuous brightness layout 
without distinct borders of textural elements. 

Within the textural method, fractographic information is extracted in the form of 
numerical parameters of the whole image, integral fractographic characteristics. 
Two general approaches to the analysis have been studied:  
1. Estimation of statistical or model parameters directly from gray-scale images, 

without analysis of detailed geometrical structure. Two methods are shown, 
based on spectral characteristics (Fourier transformation, sect. 3.4.1) and gray-
level coincidences (Gibbs random field model, sect. 3.4.2). 

2. Extraction of textural elements followed by the application of binary random 
field analysis. A method aimed at fibre similar objects is described in sect. 3.4.3. 

3.2 Setting  SEM  magnification  

For the application of the textural method, the mezoscopic dimensional area 
with SEM magnifications between macro- and microfractography (about 
30 to 500 x) is especially suitable. These magnifications were not used very much 
in the past for the absence of measurable objects in images. An appropriate 
magnification must be optimized with respect to following requirements: 

Within one image: • the number of textural elements is representative, • the 
texture is approximately homogeneous (the change with increasing CGR is 
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negligible), • the change of CGR within one image is negligible (CGR can be 
characterized by a constant).  

Within the set of images: • the general character of all textures is the same 
(the same type of analysis can be applied), • some feature of the texture is 
significantly dependent on CGR.  

Within the given image discretization: •  textural elements supposed to be the 
source of information are well represented. 

In practice, these requirements are counteracting and a compromise must be 
sought.  

3.3 Pre-processing  of  images   

Images must be pre-processed to obtain a homogeneous (transition invariant) 
texture, which is convenient for analysis. Significant fluctuations of mean 
brightness and contrast are often present in images and must be removed. These 
fluctuations are caused by morphological aspects (height and slope of crack 
surface) with characteristic dimensions corresponding to the image size or larger. A 
suitable method - normalization [8] - was derived by generalization from one-
dimensional stochastic processes. Brightness is transformed by a moving algorithm 
to mean value 128 and standard deviation 50 (for an 8-bit range). In contrast to the 
generally used equalization [21], the shape of textural elements is conserved. The 
size of the mask is a very important parameter fundamentally affecting the results. 
A too small mask destroys textural elements to smaller ones, while a too large mask 
does not acquire the desired effect.   

               
0.1 mm 

Fig.5: Original and normalized image (stainless steel AISI 304L).       

3.4 Characterizing image texture - constructing a feature vector 

The first step of fractographic textural analysis is characterizing each image 
of fracture surface by a set of numerical characteristics, a feature vector. Several 
methods were investigated and developed up to practical applicability. 
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3.4.1 Spectral analysis   

Single images of fracture surfaces are characterized by their spectrum. For the 
fractographic interpretation, suitable characteristics are not directional 
frequencies but distances and directions. That is why we interpret the spectrum 
in variables [period, direction] = [p,θ]. In order to reduce the number of output 
spectral characteristics, a reasonable sorting of periods and directions can be 
introduced [9]. Single segments of the spectrum defined by the Cartesian 
product of period and direction intervals, [p,θ] ∈(pi,pi+1) x (θj,θj+1), can be 
characterized by the mean spectrum 

, 1 ,
, , , , ,

, ,

1 if , ) , , ) ,
,  where =

0 otherwise .
r s i i r s j j

i j r s r s r s r s
r s r s

p p p
f a 1θ θ θ

δ δ δ + +∈〈 ∈〈
= 〈∑ ∑  (1) 

For example, periods were classed into 15 intervals. The sorting of directions 
was limited to 3 classes: directions close to the direction of crack growth, 
directions close to crack front, and all other directions. All combinations created 
45 segments, offering a feature vector of 45 components.  

3.4.2 Gibbs random field model  

A GRF model [3,11] of a texture is based on the term pair interaction, 
expressed in the simplest case by differences d = x1-x2 between gray levels of 
two pixels. All pairs of pixels [r,c] with the same distance vector [i, j] = [r1-r2, 
c1-c2] create a clique. A list of cliques taken into account is called search 
window W. At random textures, the significance of interactions decreases with 
the increasing distance between the pixels creating the pair. 

The main sample characteristic of an image X is the gray level co-occurrence 
histogram h(X). hi,j,d is the number of interactions d in the clique [i, j]. 
Probability of interactions is pi,j,d = hi,j,d / [(m-|i|)(n-|j|)], where m,n are image 
dimensions.  

The main GRF characteristic is potential V, a three-dimensional structure {Vi,j,d} 
of the same size as h. It compresses the information on gray level co-occurrences in 
the way similar to the energy of interactions of particles in statistical physics. 
Within a random field (space of images) defined by potential V, two probability 
distributions are especially important:  

Gibbs probability distribution of image X equals [3] 

 
( )
( )

exp * ( )
Pr( )

exp * ( )
ξ

ξ
∈Ξ

=
∑

X
V h X

V h
,                                                  (2) 

where * denotes a scalar product of arrays V and h(X) reshaped into vectors. The 
denominator is a normalization constant with Ξ denoting the set of all images.  
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The distribution of the probability of brightness in a pixel [r,c], given 
brightness values in all interacting pixels, is expressed by [3]  

( ) [ ]

[ ]

, , ( , ) ( , )
[ , ] \ 0,0

, , ( , )
[ , ] \ 0,0

exp
Pr ( , ) ( , ) , [ , ] \ [0,0]

exp

i j x r c x r i c j
i j

i j u x r i c j
u U i j

x r c x r i c j i j
− + +

∈

− + +
∈ ∈

+ + ∈ =
∑

∑ ∑
W

W

V
W

V
,  (3) 

where U denotes the set of all possible values of brightness. 
 

                
  1a 1b 2a 2b 0 m

Fig.6: Comparison of original (a) and m
Section 256 x 256 pixels. 

For a given image X0, potential V
approximation derived from the Tay
based on (2) is refined by means of 
we obtain an estimate of the potentia
was optimized to be close to the imag
compared. Although visually the ag
results are excellent. 

A suitable measure of the significan

, , , ,i j i j d i
d D

e V p
∈

= ∑

from which only those for small dista
significant relative energies reshaped
feature vector.  

3.4.3 Fibre  process1 

In many cases, the most remarkabl
a different thickness and shape. Th
fracture surface. This structure can b
properties of which are studied to fi

 

                                                 
1 In stochastic geometry, the term process 

cesses (time series, etc.) to 2D or 3D defin
.1 m
odel (b) textures. Small (1) and high (2) CGR. 

 can be estimated in two steps: The first 
lor expansion of the likelihood function 

stochastic relaxation using (3). In this way 
l together with a model texture X(t) which 
e. In Fig.6, original and model textures are 
reement is not very satisfactory, the final 

ce of cliques [i,j] is their relative energies  

, ( ) , [ , ]j d i j0 ∈X W ,                                  (4) 

nce components i,j are significant. A set of 
 into vector f can be used for the image 

e elements of textures are light fibres with 
ey reflect sharp ridges and edges in the 
e abstracted into a fibre process [2,12], the 
nd any sensitivity to CGR. The length of 

12

stands for a generalization of 1D stochastic pro-
ition set, defined by planar or spatial coordinates.  



continuous fibres is an important property. The requirement to analyze the 
continuity of fibres in points of crossing or branching ("knots") made it 
necessary to create a database of the fibre process [13,15].  

EXTRACTION OF FIBRES. The binarization of normalized images (Fig.7a) 
by threshold [2,8] met troubles because received objects did not correspond with 
qualities of fibres at any value of the threshold. A procedure, deliberately aimed 
at light fibre objects, was proposed in following steps [10,13]: 
1. Fibre detection - Marr & Hildreth edge detection [21] modified on fibres 

(Fig.7b). 
2. Tracing fibres. A successive procedure of replacing a thick fibre without 

distinct borders by a sequence of pixels (an analogy to skeleton, Fig.7c).  
 
 
 

             
a  b 

 
 

 

Fig.7: Extraction of light fibres from an image of 
the fatigue crack surface (stainless steel 
AISI 304 L). 
a) normalized image,  

20 µm

b 

c 

b) fibre detection by U5,12 (rescaled into 8 bit range),   
c) significant fibres traced. 

FIBRE PROCESS ANALYSIS AND CREATION OF THE DATABASE 
[13,15]. For any description of a fibre process, the binarized image must be 
analyzed into elements: individual fibres, vertices and objects. Vertices are 
endpoints of fibres. Two types of vertices must be distinguished: isolated fibre 
endpoints and knots - common endpoints of several fibres. An object is a 
continuous set of fibres. 

In order to classify pixels of the process as internal points, knots or endpoints, 
the number of changes background - fibre along a curve surrounding every pixel 
in a given distance can be used. 
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O - list of objects 
the first vertex of the given object  
O(1) = 1         
O(2) = 5  

V - list of vertices 
object     row   column 1/ 2/ 

V(1,:)  =   [1 1 1 1 0]  
V(2,:)  =   [1 5 1 2 0] 
V(3,:)  =   [1 3 2 3 1]  
V(4,:)  =   [1 1 3 0 3] 
V(5,:)  =   [2 5 3 4 0]  
V(6,:)  =   [2 4 4 0 4] 

F - list of fibres 
 vertex start    end      3/ 4/ 

F(1,:)  =   [1 3 1 1]  
F(2,:)  =   [2 3 2 2] 
F(3,:)  =   [3 4 3 3]  
F(4,:)  =   [5 6 4 4] 

P - list of internal pixels of fibres 
row  column 

P(1,:)  =   [2 1] 
P(2,:)  =   [4 1] 
P(3,:)  =   [2 3] 
P(4,:)  =   [5 4] 

 

Objects: 1,2 no = 2 

Fibres:  1  ,  2  ,  3  ,  4   nf  = 4 
Vertices: 1,2,3,4,5,6 nv = 6 

Pixels: np =10 

 
1/ The first fibre starting in the given 

vertex. 
2/ The first fibre on list F(:,4), finishing 

in the given vertex. 
3/ The first internal pixel of the given 

fibre on  list P. 
4/ The list of fibres ordered by finishing 

vertex. 

2

1 

 4 

 3 

 2 

1

6 

5 

4 

3 

1 2 3 4
2 

5 

4 

3 

2 

1 

1 

Fig.8: An example of a fibre process database  

 Single fibres are recorded from the starting to the finishing vertex. During the 
analysis, the database components are gradually filled in. The database structure 
was proposed so that it offers extracting information on objects and long fibres 
without browsing. An example of the database is shown in Fig.8. 

 
PARAMETRIC  MODEL  AND  JOINING  LONG  FIBRES  IN  KNOTS 

[13,15]. Let [xt, yt], t = 1,2,…,n be the coordinates of fibre skeleton pixels in the 
sequence from the starting to the finishing vertex. A moving parametric 
regression can be used with the length of a single regression T and the shift of 
moving about T/3 (only the central third of the regression is accepted). For the 
regression function, we used a combination of the polynomial and polyharmonic 
models (corresponding to Taylor and Fourier decomposition) in the elementary 
form 
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0 1 2 3

0 1 2 3

0

( ) sin( ) sin(2 ) ,

( ) sin( ) sin(2 ) ,

where 1, / .

j j j j

j j j j

j

x t a a a a

y t b b b b

t t T

τ ϕ ϕ

τ ϕ ϕ

τ ϕ πτ

= + + +

= + + +

= − + =

                        (5) 

Here j denotes the present recurrence of the regression and t0j is its starting 
index. The linear component of functions (5) expresses the position and main 
course of the j-th segment, while the trigonometric components express its 
“waving”. A single regression does not have more than one inflection. In 
consequence, the maximum density of regression inflections is one for T/3 
pixels of the fibre. This ratio defines the smoothing of details, which can be 
selected by setting T with respect to the aims of the analysis [10].  

In every knot, all possible pairs of fibres are checked whether they create a 
longer fibre passing the knot. A common regression of merged fibres is 
estimated. If its curvature in the knot is smaller than a selected threshold, both 
fibres are judged as creating a passing one.  

 
Fig.9: An example of the joint distribution of the lengths and orientations 

of  light fibres from one image. 100 pixels ≈ 37.5 µm. 

ESTIMATION  OF  FIBRE  PROCESS  CHARACTERISTICS [10,13]. The 
parametric model of a fibre process makes possible the estimation of a wide 
class of properties. Characteristics of length, direction, position and shape of 
fibres can be computed directly and exactly, without any problems with the 
discrete image representation. Also more complicated qualities can be studied - 
for example the joint distribution of lengths and orientations (Fig.9), the random 
process of the fibre orientation along its length, etc. Many of these 
characteristics would not be available by traditional methods. 

For texture feature vector, the joint distribution of fibre length and orientation 
(Fig.9) was used. To lower the number of characteristics, sorting can be 
roughened (e.g. to four classes for the direction and six classes for the length, 
with resulting 24 image parameters). 
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3.5 Relating a feature vector and the crack growth rate - the 
multilinear  model  

Let us have a set of q images with assessed crack rates vi , i=1,2,…,q, and 
characterized by a k-dimensional feature vector, i.e., a set of k textural parameters  
fiu , u=1,2,…,k. The simplest model [9,12,15] expressing the CGR as a function of 
a set of image parameters is a multilinear function resulting into a system of 
regression equations  

1
1

log
k

i u iu
u

v c f ck+
=

= +∑  ,  i = 1,2,...,q.                                  (6) 

The set of parameters cu can be estimated by the least squares method. The 
system must be strongly overdetermined - the number of equations (that matches 
the number of images) must be significantly greater then the number of 
estimated constants, q>>k+1. 

Not all characteristics fu predicate the CGR. Their significance can be proved 
by testing  the zero value of the estimated coefficients cu , u=1,…, k+1 [1]. We 
test the hypothesis H0: cu = 0 against the alternative H1: cu ≠ 0. The test criterion 
is a Student’s t-distributed statistic  

 
( ) ( )( )
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where F is a matrix with i-th row [fi1,  fi2, ..., fik, 1]. If the absolute value of tu  is lower 
than the critical value at the selected level of significance α  and  q-k-2 degrees of 
freedom, ( )t t q ku < − −−1 2 2α / , hypothesis H0 cannot be rejected and parameter fu 
should be excluded. 

A handicap originates from the multiparametric character of the method. The 
model counterbalances many increments from different sources of information. 
Therefore, a fractographic interpretation of the variety of textural elements is 
hardly possible. 

3.6 Example of application 

3.6.1 Experiment 
Methods developed will be shown in an application to fatigue fracture surfa-

ces of four laboratory specimens (C16 to C19) of stainless steel AISI 304L used 
in nuclear power plants [20]. CT specimens (Fig.10) were loaded by a constant 
triangular cycle with Fmin=1450 N, Fmax = 4850 N,  f = 1 Hz in water at 20°C.      

Fatigue crack surfaces were documented using SEM with magnification 200x 
(real  image area 0.6 x 0.45 mm). The sequence of the images was located in the 
middle of the crack surface (Fig.10) and the images were distanced by 0.4 mm.  
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used. The total number of images was 165.  
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3.6.2 Typical results 
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4. CONCLUSIONS 

Within traditional fractography, the application of image analysis methods 
increases the volume and objectivity of acquired information.  

Textural fractography can complement or substitute traditional methods. 
Simultaneously, it opens possibilities to extract new information from fracture 
surfaces, which has been concealed up to now.  

Generally, image analysis methods save time of the operator and transfer the 
demanding routine work to the computer. The cost of analyses can be lowered 
and the reliability of results raised. The possibility of automatic extraction of the 
information from larger areas of fracture surfaces increases objectivity of the 
results. 

Two new methods within the general frame of image analysis have been 
developed: The method of tracing fibres is a practical alternative to creating a 
skeleton for fibre structures without distinct borders in gray scale images. The 
database-oriented analysis of a fibre process offers a base for estimating useful 
characteristics, which were not accessible by traditional methods. The method 
was fully automated and could find a wide use in analyses of planar fibre 
processes, tessellations, etc.  

The development of new methods of textural analysis for fractography 
continues (method of auto-shape decomposition [14], applications of wavelets 
[16], etc.). The next important stage of this research will be concerned with 
applications of image analysis in fractographic reconstitution of fatigue crack 
growth under variable cycle loading.     
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