
Czech Technical University in Prague

Faculty of Electrical Engineering

Model-based Software Test Automation

Habilitation Thesis

Miroslav Bures

Department of Computer Science

Karlovo nam. 13, 121 35 Praha 2

Czech Republic

Preface

This thesis presents my selected work for the period from 2013 to 2017 and is part of my
application for the title of Associate Professor at Czech Technical University in Prague. My
research has focused on automated software testing, namely, automating the creation of test
scenarios and their execution. The motivation for selecting this area arises from the situation in
the software industry. The increasing complexity of contemporary software information systems,
together with the demand to shorten the time-to-market and to decrease the development prices
of information systems create numerous challenges for the quality assurance of the software
development process. The latest trends in this �eld imply demand for more e�ective and reliable
software testing methods, employing automation and model-based approaches. In the thesis, I
present three research tracks, namely path-based test case generation strategies, combinatorial
and constrained interaction testing and test automation frameworks for sub-optimally structured
software development projects. In these tracks, I identify six research challenges; then, I introduce
the projects I am leading or have participated in that address these challenges. This work is
documented by six papers and articles, that are included in the appendix of this thesis.

2

Acknowledgments

I would like to thank my wife Caroline, my little son Kubik and my family for their patience
and support during �nishing this thesis. I would also like to thank all of my colleagues who have
contributed to the work which I present in this thesis and to my colleagues from the Department
of Computer Science for their support and inspiration during my work.

3

Contents

1 Introduction 5

2 Path-based Test Case Generation Strategies 6
2.1 Motivation and State of the Art . 6
2.2 Contribution . 9

3 Combinatorial and Constrained Interaction Testing 12
3.1 Motivation and State of the Art . 12
3.2 Contribution . 14

4 Test Automation for Sub-optimally Structured Projects 15
4.1 Motivation and State of the Art . 15
4.2 Contribution . 17

5 Summary and the Future Work 19
5.1 Future Research Directions . 20

6 List of selected author's publications 22

7 Appendix A: Employment of Multiple Algorithms for Optimal Path-based
Test Selection Strategy 29

8 Appendix B: Testing the consistency of business data objects using extended
static testing of CRUD matrices 45

9 Appendix C: On the e�ectiveness of combinatorial interaction testing: A case
study 60

10 Appendix D: Constrained Interaction Testing: A Systematic Literature Study 69

11 Appendix E: Identi�cation of Potential Reusable Subroutines in Recorded
Automated Test Scripts 95

12 Appendix F: Tapir: Automation Support of Exploratory Testing Using Model
Reconstruction of the System Under Test 130

4

1 Introduction

Current information systems are evolving and have begun to support many parts of people's
everyday routines. This evolution has been accompanied by several characteristic trends: infor-
mation systems are growing in complexity and becoming more distributed and integrated, and
users' demand for service availability is and the dependency on various information systems are
increasing. Because the IT industry enables various business areas, competition also creates a
demand to shorten the time-to-market and to decrease the development prices of information
systems. These e�ects increase the demand for more e�ective and e�cient software testing and
veri�cation methods. In addition to supporting sustainable development in the software industry,
the demand for more e�ective testing methods also has a strong economic justi�cation, given
that testing and repairing defects represents a signi�cant proportion of typical software project
costs (estimates of 50% [35] and ranging from 40% to 80% [75] have been reported).

Model-based Testing (MBT) [52] is widely recognized as a systematic way of ensuring the
accurate and e�ective testing of a software system. In MBT, a model of the system under test
(SUT) is created and used to automatically generate test scenarios with a suitable strategy.
Despite the challenges (such as the assumption that a su�ciently good SUT model exists), I
personally consider MBT to be the best available approach to structured system testing, and
the majority of my research work relates to this discipline. Over the period cited above, which
is the subject of this thesis, I focused on three principal research tracks:

1. Path-based test case generation strategies focus on generating test cases that re�ect
the priorities of the SUT model. Software test scenarios are composed of sequences of
actions to be exercised in the SUT. Selection of particular sequences results in a higher
probability of defect detection, while other sequences may contain duplicates and cannot
e�ectively detect defects. This knowledge has motivated us to develop and improve strate-
gies for generating these sequences in an automated way from the SUT model. To aid in
this process, various metadata can be used, especially priorities of the individual functions
of the SUT (Section 2).

2. Combinatorial and constrained interaction testing. Exercising all possible combi-
nations of the input data during the testing of a software system is technically impossible,
because the number of combinations grows enormously for an SUT of non-trivial com-
plexity. The same problem also occurs for various SUT con�gurations (e.g., the platform
variants and module versions of various devices to test) in integrated software systems.
This problem requires further investigation; strategies should be developed to select the
relatively small set of test cases that provide a high probability of detecting the defects in
the SUT (Section 3).

3. Test automation frameworks to increase the e�ciency of testing in sub-optimally struc-
tured software development projects. E�ective test automation assumes a certain level of
structure in a project; for instance, the presence of SUT design documentation, which can
be used to design the test cases or presence of a test automation architecture which can
decrease the maintenance costs of the automated testware. However, many projects lack
such a structure. Utilizing test automation and MBT concepts for such projects is not
impossible, but alternative techniques should be proposed and evaluated (Section 4).

In each of these tracks, I identi�ed areas that had not been satisfactorily examined in previous
research and development work. Building on these gaps in knowledge, I proposed alternative
and innovative approaches or participated in projects that aimed to do so.

The structure of this thesis is as follows. Each of three tracks outlined above is discussed in
its own section. Each section begins with a Motivation and state of the art subsection in which
I summarize the related work and identify the issues (marked as �challenges� in the text) that
inspire the development of an innovative approach to solving the issue. Next, in the Contribution
subsection, subsection, I introduce the projects I am leading or have participated in that address
these issues. I refer to my published papers (or papers recently accepted for publication) that are
included in the appendix of this thesis. For this thesis, I have selected six papers that document
the projects I discuss here. Five of these papers have been published (or accepted for publication)

5

in impact factor journals and conference proceeding and one paper is currently under review in
a Q1 impact factor journal. I also present this �nal manuscript to provide a better overview of
my current projects.

This thesis discusses six research and development challenges (all of which have numerous
synergies). The variety in topics is intentional, re�ecting my attempts to gain deeper insight into
various important aspects of software testing automation and MBT research and development.
This breadth will help me guide and supervise Ph.D. students in a wider number of areas in the
software testing discipline. Another reason for this broad focus is that it will improve my ability
to participate in grants and industrial cooperation projects. These are important to the funding
of the Software Testing IntelLigent Lab (STILL) 1 research group, which I personally consider
to be the most stimulating project in my professional track.

2 Path-based Test Case Generation Strategies

During the creation of the test cases for a software system, a test analyst must de�ne the sequence
of actions in the function calls of the SUT. Testers then apply these sequences in the SUT to
detect defects. This technique is frequently used in many current projects and can be applied to
various levels of testing and SUT abstraction (e.g., integration testing or functional end-to-end
testing). To construct consistent and e�ective test cases, which are optimal from an economic
viewpoint, a systematic approach is needed. The MBT discipline provides ways to generate these
test cases from an abstracted model of SUT processes that is based on a directed graph.

2.1 Motivation and State of the Art

Most commonly, an SUT model is de�ned as a directed graph G = (N,E), where N is a set of
nodes, N 6= ∅, E is a set of edges and E is a subset of N ×N . We de�ne one start node ns ∈ N .
A set Ne ⊆ N contains the end nodes of the graph, where Ne 6= ∅ [58]. A test case t is a sequence
of nodes n1, n2, .., nn, with a sequence of edges e1, e2, .., en−1, where ei = (ni,ni+1), ei ∈ E,
ni,∈ N , and ni+1 ∈ N . The test case t begins with the start node ns (n1 = ns) and ends with
the G end node (nn ∈ Ne) . The test case t can be denoted as a sequence of nodes n1, n2, .., nn,
or by a sequence of edges e1, e2, .., en−1. The test set T is a set of test cases. Further, a set of test
requirements R is de�ned to determine the required test coverage [58, 51]. A test requirement
is a path in G, which must be present as a sub-path of at least one test case t ∈ T . The test
requirements can be used either for (1) de�nition of the general intensity of the test cases or (2)
expression, in which parts of the SUT model G are considered a priority that should be covered
by test cases.

Various test coverage criteria are de�ned and recognized as a de-facto industry standard [58].
All Edge Coverage (or Edge Coverage) requires each edge e ∈ E to be present in the test set T
at least once. Alternatively, All Node Coverage requires each node n ∈ N to be present in T
at least once. To satisfy the Edge-Pair Coverage criterion, T must contain each possible pair
of adjacent edges in G [58]. All Node and All Edge Coverage is suitable for low-intensity tests,
whereas Edge-Pair Coverage provides a higher probability of defect detection (which is achieved
by a greater number of test cases). For high-intensity testing, Prime Path Coverage is used [58].
To satisfy this criterion, each reachable prime path in G must be a sub-path of the test case
t ∈ T . A path p from e1 to e2is prime if (1) p is simple, and (2) p is not a sub-path of any other
simple path in G. A path p is simple when no node n ∈ N is present more than once in p (i.e.,
p does not contain any loops); the only exceptions are e1 and e2, which can be identical (p itself
can be a loop) [58].

Alternatively, the Test Depth Level (TDL) [82] coverage criterion can be used. TDL = 1
when ∀e ∈ E the edge e appears at least once in at least one test case t ∈ T . TDL = x when
the test set T satis�es the following conditions: for each node n ∈ N , Pn is a set of all possible
paths in G starting with an edge incoming to the decision point n, followed by a sequence of
x − 1 edges outgoing from the node n. Then, ∀n ∈ N , the test cases in test set T contain all
paths from Pn.

1http://still.felk.cvut.cz

6

The problem of generating a T that satis�es the de�ned test requirements has been solved
by a number of algorithms [5, 54, 85, 22, 12, 51, 73]. In addition to genetic algorithms [12, 76], a
number of nature-inspired algorithms have also been applied, for instance, the ant colony [22, 61]
and �re�y [62] algorithms or the algorithms inspired by the �eld of microbiology [85].

The path-based technique is universal and can be applied in various types of tests. In addition
to the composition of functional end-to-end test scenarios [A.1, A.9], the technique can be used
to create scenarios for integration tests or testing techniques based on the SUT source code
[43, 55]. On the source code level, the technique naturally overlaps with data-�ow techniques
[24, 84, 49, 4], that primarily aim to verify data consistency.

To assess the optimality of T , various criteria can be used. Commonly used test set optimality
criteria are based on the number of nodes or edges in the test cases, the number and lengths of
the test cases, or the coverage of R by the individual test cases [54, 58, 55].

In a practical test design process, prioritizing the individual parts of the SUTmodel is essential
to optimize the test set. As an example, consider a work�ow in an information system that must
be covered by path-based test scenarios. Only certain parts of the work�ow represent the main
part of the business process, which should run without blocking defects to ensure the business
operation of the company. Other parts of the work�ow have lower priority. From a practical
testing viewpoint, it is important to address the prioritized parts of the work�ow with intense
test cases, but less stringent testing could be su�cient for the low-priority parts; this would
reduce testing costs. Such prioritization adds more complexity to the problem of generating T
from G and R.

As many individual reports show, previously published algorithms di�er in their ability to
produce a T that satis�es the various test coverage criteria [51]. Moreover, they di�er in their
ability to produce a T that will be optimal, considering the various optimality criteria. In
addition, for various problem instances G, di�erent algorithms will provide optimal solutions
[A.1]. Formulation of a universal algorithm that will produce an optimal test set T for various
test coverage and test set optimality criteria seems to be unrealistic. This di�culty suggests the
following question: could the available algorithms be combined to produce an optimal test set
according to selected optimality criteria? (Challenge 1.1)

Apart from the Challenge 1.1, it must be noted that some types of defects cannot be detected
using path-based techniques. One example is a data consistency defect. To detect defects of this
type, we must consider not only the SUT functions but also the principal data entities processed
by them. Such data entities de�ne the data objects that are generally stored in a persistent
data layer of the SUT. For test design purposes, these entities are commonly identi�ed at the
conceptual level of the SUT design, and they model the principal data objects processed by the
SUT. During the SUT run, several data objects are initiated as instances of a particular data
entity. These data objects are created, read, changed or deleted by SUT functions.

A function is an SUT feature that performs any of the Create, Update, Read and Delete (C,
R, U, and D, respectively) operations on a data entity. F = {f1, .., fn} is a set of all the SUT
functions, and D = {d1, .., dp} is a set of all the data entities that are considered in testing. A
data entity d ∈ D is de�ned with a set of attributes A = {a1, .., an}. The data object o is an
instance of the data entity d. In the initial state, the values of attributes of data object o are set
to V = {v1, .., vn}. If a data entity d is inconsistent, we consider this to be a consequence of an
SUT defect in function f1, when the following scenario is ful�lled.

Function f1 modi�es the attribute values of data object o. Based on the SUT speci�cations,
after this change, o should have its attribute values set to V ′ = {v′1, .., v′n}. Function f1 contains
a defect, which which causes that the attribute values of o are set to V ′′ = {v′′1, .., v′′n}. If
V ′ 6= V ′′, we consider the data object o to be inconsistent. Such an inconsistency can trigger
defective behavior in the SUT when o is handled by another SUT function from FX ⊂ F .

When f1 and FX are part of the same SUT process modelG (representing nodes or edges of the
model), such data consistency defects can certainly be detected using path-based test scenarios
with All Paths Coverage strength. However, such an approach would be very impractical, as All
Paths Coverage produces extensive test cases, which are resource intensive, even in the case of
test automation.

Moreover, the limits of path-based techniques become clear when f1and FX belong to di�er-

7

Figure 1: An example of a data consistency defect [A.2].

ent, disjunct SUT processes (e.g., if di�erent user roles are used or the processes of the integrated
software systems are implemented in a di�erent subsystem but share the same data). This situ-
ation is depicted in Fig. 1.

To detect such a data consistency defect, the tester must switch from process X to process
Y. The path-based technique can accomplish this task. However, the situation would have to
be modeled using a directed graph based model, which would become impractical (given that it
would be necessary to cover all possible transitions between process X and process Y).

These situations (f1 and FX being part of the same SUT process and f1 and FX belonging
to disjunct SUT processes) are not rare. During our cooperation with industry, we discussed this
issue several times with test analysts and test managers from more than �ve software industry
projects. In projects that involve complex integrated information systems from the telecommu-
nications and �nance domains, such data consistency defects are estimated to be the root cause
of 15-25% of the defects reported during the development lifecycle. Moreover, these defects are
by nature di�cult to detect and reproduce (replicating the defective behavior to analyze the
defect), and give the impression of �random� behavior in the SUT. This increases the overhead
in the software testing and defect removal process.

To detect data consistency defects systematically and e�ciently, a specialized data consistency
testing technique should be used. Regarding the SUT source code level, the problem has been
addressed by numerous studies in the area of data �ow analysis [24, 84, 49, 4, 23].

However, for the design of functional end-to-end tests (such as those typically required in
user acceptance testing), a higher-level SUT model is needed. The Data Cycle Test (DCyT)
technique [82, 31] employs the CRUD matrix, which is de�ned as M = (mi,j)n,p, n =| F |,
p =| D |, mi,j = {o | o ∈ {C,R,U,D} ⇐⇒function fi performs the respective Create, Read,
Update or Delete operations on the data entity dj ∈ D}.

A common guidelines for the DCyT include a high-level method, how to create a CRUD
matrix, a set of remarks about the possibility of static testing using a CRUD matrix as an SUT
model and a method to create dynamic test cases that can detect data consistency defects. The
principle of the method is to create special test cases for each of the data entities and to compose
these test cases using a suitable �ow of Create, Update, Read and Delete operations that are
exercised on a particular data entity. Regarding the static testing, the TMap Next description
of the DCyT [82] is based on veri�cation of the completeness of the C, R, U, and D operations
for each data entity d ∈ D. This approach is valid; however, it can be extended to gain more
e�cient testing method.

Previous literature has not intensely addressed the static testing that employs classical CRUD
matrices. A number of data �ow analysis studies explore the possibilities of detecting work�ow
design errors [78, 34, 57], including automated correction measures [3]. However, these studies
used di�erent SUT models; for instance, UML statechart diagrams [34], Petri nets [3, 57] (appli-
cable in cases where Business Process Model and Notation (BPMN) diagrams are available as the

8

SUT model) or Web Services Business Process Execution Language (WS-BPEL) for veri�cation
of web services design [79].

For static testing of the database design, the Formal Concept Analysis (FCA) approach can
be used [40]. From a conceptual viewpoint, this approach is similar to a static testing technique
based on a CRUD matrix. However, there are several di�erences in the model and in the process
of static testing. The formal context used to model the problem captures data objects and their
attributes (which can also be used to model the events relevant to these objects). No C, R, U, or D
operations are used in this model. Analysis based on the de�ned relationships and dependencies
between the data objects is used to detect anomalies in the model; this step involves more
extensive processing than CRUD matrix based static testing. The technique primarily focuses
on veri�cation of the SUT model. The FCA method also has broader applications, such as the
detection of faulty data in a system [17] or construction of a system model [28].

Alternatively, the Data-Flow Matrix technique has been used for static testing of business
processes [89] to detect design errors (missing, redundant or con�icting data in the process).
The Data-Flow Matrix is similar to the CRUD matrix, but it includes only the Read and Write
operations. The Data-Flow Matrix is then integrated with a SUT work�ow model to detect
design anomalies.

Despite the advantages of these approaches, a lightweight static testing technique that as-
sumes the existence of only a CRUD matrix and does not require further analysis or combination
with other SUT design information should be developed for test engineers (Challenge 1.2).

2.2 Contribution

We address Challenge 1.1 by providing a comprehensive solution that enables determination of
an optimal T for various test coverage criteria, various problem instances and di�erent test set
optimality criteria. We combine three previously published algorithms currently used to solve
the problem, the Brute Force Solution (BF) [54], Set-Covering Based Solution (SC) [54, 36, 37]
and Matching-Based Pre�x Graph Solution (PG) [54, 36, 37], as well as our work in the area
(Process Cycle Test [A.10], inspired by its general de�nition in [82], Prioritized Process Test
(PPT) [A.9] and Set-Covering Based Solution with Test Set Reduction (RSC) [A.1]).

The test requirements R, which have been extensively used in previous work, can either
be used to de�ne the prioritized parts of the SUT model that should be examined in the test
cases, or to de�ne the general intensity of the test set T (Prime Path coverage for instance [36]).
Unfortunately, when the test requirements are used to specify the general test coverage criteria,
they cannot also be used to determine which parts of the SUT should be considered a priority
to be covered by the tests, along with the general test coverage criterion. This limits a number
of published algorithms that use the test requirement concept, such as the SC or the PG [54].

To propose an alternative approach that addresses this issue, we modeled an SUT process as
a weighted multigraph G = (N,E, s, t), where N is a set of nodes, N 6= ∅, and E is a set of edges.
s : E → N assigns each edge to its source node and t : E → N assigns each edge to its target
node. One start node ns ∈ N is de�ned in the model. A set Ne ⊆ N contains the end nodes of G
and Ne 6= ∅. For each edge e ∈ E (resp. node n ∈ N), priority(e) (resp. priority(n)) is de�ned.
In addition, priority(e) ∈ {high,medium, low} and priority(n) ∈ {high,medium, low}. When
a priority is not de�ned, it is considered low. Eh, Em and El are a set of high, medium and
low-priority edges, respectively; Eh ∩ Em ∩ El = ∅.

In contrast to algorithms based on G and R, the PPT, is based on G as the SUT model. We
used two parallel test coverage criteria: TDL and its reduction by Priority Level (PL), which
means that it includes only the priority parts of the SUT model for the created test cases [A.1].
PL ∈ {high,medium}; PL = high when ∀e ∈ Eh the edge e is present at least once in at least
one test case t ∈ T . Further, PL = medium when ∀e ∈ Eh ∪ Em the edge e is present at least
once in at least one test case t ∈ T . When a test set T satis�es the All Edge Coverage, it also
satis�es PL. The TDL includes Edge Coverage (TDL = 1) and Edge-Pair Coverage (TDL = 2).
The model G and PL are convertible to G and a set of Test Requirements R when no parallel
edges are present in G.

The strategy works as follows. The test analyst creates an SUT model G and de�nes the

9

Figure 2: High-level test set selection strategy schema [A.2].

prioritized parts of the model. This process is accomplished in the Oxygen2 platform user
interface. To generate the test cases, the user selects the test coverage criteria, PL and test set
optimality criteria from a set of options [A.2]. The employed algorithms then create the test
sets based on the test coverage criteria and PL. Subsequently, the test set that best �ts the
test set optimality criteria is provided to the test analyst. An overview of the test case selection
strategy is depicted in Fig. 2.

The process begins with the conversion of G to G and R for the BF, SC, PG and RSC
algorithms. Next, a set of algorithms are selected to generate the T for G for the particular
test coverage criteria. The algorithms are executed with G (or with G and R, corresponding to
G), which results in test sets T1..Tm. Values of the test set optimality criteria for T1..Tm are
computed, and based on these criteria, the optimal T of T1..Tm is selected (a more complex opti-
mality consideration is also available; employing the optimality function or a sequence selection
approach, which is composed of simpler optimality criteria).

This strategy was veri�ed using four combinations of Edge Coverage and Edge-Pair Coverage
with two PLs on 50 various problem instances and 16 alternative test set optimality criteria
(or test set selection strategies). The results indicate the strength of the proposed approach.
Depending on the individual problem instances and the test set optimality criteria, di�erent
algorithms provided the optimal test set; this e�ect was observed in four combinations of the
Edge Coverage and Edge-Pair Coverage criteria with two PLs.

As already mentioned above, PPT provided the best results for Edge Coverage. However, in
particular problem instances and given certain test set optimality criteria, SC [54, 37, 36], PG
[54, 37, 36] and RSC [A.1] provided better results than PPT. Surprisingly, in isolated cases, BF
[54] outperformed the other algorithms. For Edge-Pair Coverage, RSC outperformed the PPT
for the majority of the problem instances and test set optimality criteria. However, it was not
the clear winner in all instances and for all optimality criteria.

The strategy implemented in the development branch of the Oxygen (formerly PCTgen)
experimental MBT platform [A.1, A.9, A.10]. This platform was developed by the STILL
research group; in addition to generation of the test cases, it allows benchmarking and comparison
of individual algorithms.

The proposed strategy cannot replace the development of new and more e�cient algorithms
for generating path-based test cases. Because it utilizes existing algorithms, the quality of the

2http://still.felk.cvut.cz/oxygen/

10

results depends on the quality of the algorithms. The added value of the strategy is that it allows
the optimal test set to be selected based on de�ned optimality criteria for a particular SUT model.
Considering that the algorithm that will generate the optimal test set for a particular problem
instance is not known in advance and that comparison between the test sets can be a demanding
task, the proposed strategy is a practical option for the daily test design routine in software
development projects.

The results are presented in paper [A.1], currently being reviewed in a Q1 impact factor
journal. In this subproject, I designed the test set selection strategy, I designed the test set
selection strategy and the PPT and RSC algorithms. I also designed the experimental method,
supervised colleagues who implemented the strategy and the algorithm in the Oxygen platform,
supervised the experiments, analyzed the results and wrote the article that presented the strategy.

To address Challenge 1.2, we proposed an extended method of static testing using CRUD
matrices to fully utilize its potential. In general, the use of DCyT [82, 31] does not consider the
preparation of the CRUD matrix. Implicitly, the CRUD matrix created by a system analyst or
architect during the design phase of the software project is expected to be present as the test
basis. However, alternative methods of CRUD matrix preparation are available, and techniques
based on the comparison of two alternative CRUDmatrices can be employed during static testing.
In addition, a greater number of static testing rules can be de�ned for a single CRUD matrix.

In principle, the DCyT static testing using a CRUD matrix has two goals: (1) to detect design
defects in the SUT, and (2) to help design more e�ective and consistent dynamic test cases for
detecting the data consistency defects explained in section 2.1, given that inconsistencies and
defects in the test basis can lead to the production of inconsistent, wrong or ine�cient DCyT
dynamic test cases. We de�ne an inconsistency in the test case as occurring when the sequence
of the actions to be exercised in the SUT test case cannot be executed in the actual SUT. In
other words, the test case instructs the tester to execute an action that is not achievable from
the actual position of the tester in the SUT.

We de�ned four types of CRUD matrices that can be created during a software development
project: (a) a matrix constructed directly from SUT code, ideally in a semi-automated way, (b) a
matrix created by a technical analyst or data architect as a part of data storage design during the
design phase of the project (this matrix is typical of the CRUD matrices assumed to be present
in the project by DCyT [82, 31]), (c) a matrix created by a test designer based on the business
or technical speci�cations of the SUT and (d) a matrix created independently by a test designer
based on SUT design speci�cations and the test designer's domain knowledge (in consultation
with the other team members).

Based on these types of matrices, we proposed a set of rules that allowed comparison between
two alternative CRUD matrices and the detection of design inconsistencies or defects, as well
as potential indicators of a suboptimal SUT design. We also suggested these rules for a single
CRUD matrix.

In an experiment measuring the e�ciency of the suggested technique, we focused on the
impact of static testing on the consistency of DCyT test cases, given that this topic had not
been investigated in the literature. We provided several groups of participants with design
documentation of an experimental SUT (Mantis BT system), in which arti�cial inconsistencies
were present. We let one group create DCyT test cases without support from static testing, while
participants in the second group were instructed to use the suggested static testing techniques
and then to create the DCyT test cases. With the help of the Tapir framework (see section
4.2), we evaluated the resulting DCyT test cases. To evaluate the consistency of the test cases,
we used the SUT model re-engineered using the Tapir framework. To evaluate the e�ciency of
the test cases with respect to their ability to detect defects, we de�ned a set of arti�cial data
consistency defects in the SUT model used by the framework.

No signi�cant di�erences were observed in the total number of test steps, but static testing
led to the design of more consistent test cases. Additionally, these test cases had better detection
abilities than the test cases prepared using an inconsistent test basis without the proposed static
testing technique.

The results are presented in article [A.2], which was recently accepted in the journal Cluster
Computing (Q2, IF 2.04). In this subproject, I de�ned the method of extended static testing,

11

and the experimental procedure, supervised colleagues who implemented the experimental setup
using the Tapir framework, supervised the experiments, analyzed the results and wrote the article
presenting the method.

3 Combinatorial and Constrained Interaction Testing

During software testing, various combinations of test data can be used as SUT inputs. Particular
data combinations can activate a software defect, while others do not. Additionally, various
data combinations can activate a particular defect. Preparing exhaustive data combinations for
SUT inputs of non-trivial complexity results in an enormous number of possible combinations;
this phenomenon is referred to as combinatorial explosion. Running an SUT with these data
combinations is not a realistic task for either manual or automated testing.

Hence, a strategy for reducing this dataset while maintaining the data's potential to activate
(detect) defects is needed. Various test coverage criteria have been de�ned and techniques for
reducing and optimizing the dataset have been provided [58]. As part of my research, I focused
on Combinatorial Interaction Testing (CIT) [15] and Constrained Interaction Testing [38] (we
use the acronym ConsIT to avoid confusion with Combinatorial Interaction Testing). Both
approaches are e�ective means of reducing the set of testing data while maintaining its defect
detection potential. They also allow for �exible scaling of the test intensity. These features
make the Combinatorial and Constrained Interaction Testing techniques applicable in a variety
of situations in industrial software or system testing projects. In addition to the preparation of
testing data combinations, these techniques can also be used to help design an e�cient test bed
(that is, selecting suitable platform variants or versions of the devices or software modules to
test) and for solving various other engineering problems, as we explain in section 3.1.

3.1 Motivation and State of the Art

Most test design techniques consider SUT input parameters individually. However, based on
deeper analysis of the problem and recent evidence, interactions between the input parameters
can be a potentially large source of defects in an SUT [53, 68]. As an example, consider an
algorithm for determining the shipment price in a logistics information system. Three inputs
are used: client type, distance, and order volume. The defect is present for a condition in which
the client type and the order volume are combined. Considering all three parameters separately
does not guarantee that the defect will be detected. To ensure detection, the interaction between
client type and order volume must be considered.

The CIT (also referred to as t − way or t − wise testing, where t stands for the interaction
strength) can provide a solution. The technique considers the interaction of t inputs in the gen-
erated test set [15]. Typically, not every input parameter in the SUT will lead to detection of
a defect; most faults are identi�ed by including interactions between a small number of input
parameters. The CIT minimizes the size of the test set and prevents exhaustive testing, which
is not realistic from the viewpoint of project resources. The most common variant of the CIT is
pairwise (2− way) testing, which is also the most frequently applied method in software devel-
opment projects [6]. However, evidence shows that to detect some software defects, interactions
between a larger number of input parameters must be considered [15]. This need represents the
motivation for the t − way CIT where t > 2, which is suitable for intense testing of critical
software systems. Some strategies have tried to generate the test sets for values up to t = 12
[93].

To model the problem, a Combinatorial Covering Array (CA) can be used. CA is a practical
alternative to the older mathematical object Orthogonal Array (OA). An OAλ(N ; t, k, v) is an
N×k array, where for everyN×t sub-array, each t−tuple occurs exactly λ times, where λ = N/vt;
t is the combination strength; k is the number of input functions (k ≥ t); and v is the number
of levels associated with each input parameter [29]. However, OAs reach their limit for medium
and large SUTs, because it is di�cult to generate suitable OAs for them. Additionally, problems
arise with modeling the real testing problem using an OA. The CA addresses these limitations.
A CAλ(N ; t, k, v) is an N × k array over (0, ..., v − 1) such that every B = {b0, ..., bt−1} ∈ is
λ-covered and every N × t sub-array contains all ordered subsets from v values of size t at least λ

12

times, where the set of column B = {b0, ..., bt−1} ⊇ {0, ..., k− 1} [68]. In this case, each t− tuple
must appear at least once in a CA.

In cases when the number of component values varies, a Mixed Covering Array (MCA) can
be used. An MCA(N ; t, k, (v1, v2, . . . vk)), is an N × k array on v values, where the rows of
each N × t sub-array cover and all t − tuples of values from the t columns occur at least once.
Alternatively, the array can be denoted as MCA(N ; t, vk11 v

k2
2 ..v

k
k).

Various approaches have been used to generate the CIT test cases or to solve other problems
using CA. Recently, metaheuristic search techniques have been applied; these have a signi�cant
impact on the construction of optimal t − way and variable strength test sets [1, 94, 91, 2, 92].
Commonly, metaheuristic strategies start with a population of random solutions. Next, one or
more search operators are iteratively applied to improve the overall �tness of the solution. The
main di�erence between individual metaheuristic strategies is based on their search operators as
well as on how the exploration and exploitation are manipulated.

Numerous strategies have been applied. For instance, to support construction of the uniform
and variable strength t−way test set, approaches have been employed that include the simulated
annealing-based strategy [11], colony optimization [87], the genetic algorithm [83], and even the
harmony search algorithm, which mimics the behavior of musicians trying to compose music [1].

CAs have extensive applications [72]. For instance, they have been used for performance
evaluation of communication systems [77], optimization of dynamic voltage scaling in high-
performance processors [64], servomotor controllers [7], and tuning of functional order propor-
tional�integral�derivative (PID) controllers [65].

Many applications have been identi�ed in software testing on various levels [30, 10, 39, 70,
68, 66] and software product lines [80]. In addition to production of the test cases, CA is also
suitable in the prioritization of a regression test set [14]. In these techniques, fault detection
data are employed to analyze the e�ciency of the test set [88].

In software testing, the applicability of a CA grows with the complexity of the SUT. In
addition to generating e�ective input test data combinations, the technique can be used to reduce
the possible SUT con�gurations to test (all possible combinations of particular module versions,
deployment platforms or device variants). The importance of CIT has grown with the rise of
Internet of Things (IoT) technology, for which the growing number of system con�gurations in
operation has been described as an important issue [46].

Considering the applicability of the CIT technique and the number of software testing prob-
lems that can be solved using this technique, development of more e�ective CIT algorithms
represents an important research topic. This topic includes obtaining deeper insight into the
practical e�ectiveness of the test cases produced using the CIT technique; as previous reports
on similar topics have indicated that this area merits further empirical investigation [47, 81]
(Challenge 2.1).

To improve the e�ectiveness and applicability of CIT, the constraints on input parameters
must be managed appropriately [67]. In the various SUTs, input parameters are subject to
various constraints (e.g., if a particular shipment method is selected that is available only for
certain regions or if orders exceeding a certain sum exclude certain payment methods). If these
constraints are not respected during test generation, invalid test cases could be produced and
could result in false defect reports. In addition, these conditions must be tested more intensely,
because they represent a potential source of defects in the SUT code. The same problem is
present in the combination of con�gurations; constraints are often present when determining the
combination of platforms, versions of the individual modules, or versions of the devices to test
(e.g., an Android web browser is not available for an iOS mobile phone).

Only a few of the current interaction testing strategies satisfy the constraints in the generated
test set [15, 86, 69]. Optimization of the test set to satisfy the constraints also adds complexity
to the problem. This demand has lead researchers to explore alternative strategies for generating
the constrained interaction test sets. These e�orts are supported by practical applications in the
software development industry [38]. Moreover, we can expect signi�cant growth in this research
area, especially given the IoT trend. The complexity of IoT solutions, the increasing importance
of integration testing, and the possible combinatorial explosion of con�gurations to test will all
increase the demand for more e�ective test design techniques. Examining the constraints can

13

help optimize the test set (or con�guration set).
What are the prospective research directions in constrained integration testing? Some previ-

ous studies have discussed CIT and ConsIT, such as Nie and Lueng [15]. This study reviewed CIT
and its applications, summarizing the basic concepts, methods of test set construction and ap-
plications. The study also reviewed ConsIT methods. Another study by Kuliamin and Petukhov
[86] provided an overview of the various methods for constructing CIT test sets. Ahmed and
Zamli [69] provided an overview of the applications of interaction testing. However, no compre-
hensive review paper has speci�cally focused on ConsIT and its research directions (Challenge
2.2).

3.2 Contribution

To obtain more insight into the e�ectiveness of t − way combinatorial testing, adressing Chal-
lenge 2.1, we measured the e�ectiveness of 2 − way and 3 − way combinatorial test sets for
a selected business scenario: reporting a problem in the issue-tracking system JTrac 3. In the
experiment, we examined entering the issue and subsequent processing of the entered data. We
used the con�gurable data �elds of the issue object to design an object consisting of nine �elds;
we then extended the SUT code by additional veri�cations of the issue data entered into the
system. For each of the �elds, we identi�ed equivalence classes of the data that were entered
into the SUT. We adopted the setup for this con�guration from a recent industrial project on
which we consulted. Several combinations of issue object values were not allowed during the
issue-tracking process. We considered this version of code as a baseline SUT and the correct
version. We used the baseline SUT to implement the test oracle, which determined the expected
results of the individual tests.

To simulate defects in the SUT, we prepared ten instances of the SUT, each with a di�erent
set of defects, which were injected by a standard code mutation technique. We focused on
mutating conditions in the source code, and di�erent types of mutants were used to simulate the
defects likely to be made by a developer (e.g., operator change, variable change or value change).
To detect the defects caused by the code mutations in the SUT, we implemented Selenium
WebDriver 4 automated tests, which entered the issues into the SUT and tested the subsequent
processing of the issue, including the data validation mechanism for the allowed values.

We generated the test data to be entered into the SUT using the recently developed PSTG
strategy [71, 67]. The 2 − way test set for the de�ned problem was composed of 48 test cases
and the 3 − way test set was composed of 322 test cases. Next, using the Selenium test scripts
and the automated test oracle, we examined each test combination in the SUT for each of the
ten SUT instances (8020 tests in total). The data were automatically collected to allow further
processing and evaluation.

The results provide insight into the e�ciency of the 2 − way and 3 − way test sets as well
as the types of defects that could be detected by the individual tests. The potential to detect
a defect caused by a code mutation was not uniformly distributed among the test cases. Each
test case had di�erent detection capabilities. Three arti�cial defects were not detected by the
2 − way test set, but all the defects were detected by the 3 − way test set. Surprisingly, the
ratio of tests that did not detect any defect in the SUT was relatively high; it was similar for
the 2−way (39,6%) and 3−way (40,4%) test sets. The �ndings can help in the development of
prioritization method for the regression test set based on the e�ciency of the test cases examined
in the SUT.

The results are presented in paper [A.3], which was published in the 2017 IEEE Interna-
tional Workshop on Combinatorial Testing and its applications (part of the IEEE QRS 2017
conference proceedings). For this subproject, I designed the experiment, supervised colleagues
who implemented the experiments, supervised the experiment, analyzed the results, wrote part
of the paper presenting the experiment and reviewed the �nal text.

To address Challenge 2.2, I participated in a comprehensive systematic literature review to
summarize and categorize work related to Constrained Interaction Testing over the last decade.

3JTrac O�cial Web Page, http://jtrac.info/
4http://www.seleniumhq.org/projects/webdriver/

14

Although previous reviews have examined CIT [15, 69, 86], no aggregation of the available
research in Constrained Interaction Testing had been performed. Thus, the paper is a useful
complement to existing reviews, because it presents a more recent and complete review of the
�eld. The goal of this study was to identify relevant papers and evaluate the methods used
for ConsIT and the results that had been presented, thus allowing discussion of future research
directions and opportunities. We used an established systematic method for conducting mapping
studies in the software engineering area [45].

The study aimed to address eight research questions, as follows: (1) the evolution of published
studies in the �eld, (2) an overview of researchers, organizations, and countries active in the �eld,
(3) the topics and subjects that had been addressed in the research and their distribution, (4)
the strategies and techniques used to support the generation of constrained interaction test sets,
(5) the benchmarks used to evaluate Constrained Interaction Testing techniques, (6) the current
applications of Constrained Interaction Testing, (7) the challenges and limitations of the �eld,
and (8) possible future research directions.

By using a three-phase search and re�nement process, we narrowed the original 2668 papers
found by the search string in �ve databases (IEEE Explore, ScienceDirect, ACM Digital Library,
SpringerLink, and Scopus) to a �nal set of 103 relevant high-quality studies, which were analyzed
further. The studies were grouped into four categories: constrained test generation studies,
application studies, generation and application studies and model validation studies.

A number of �ndings from the study can be used to discuss prospective future research areas.
To solve the constraints, it was most common to exclude constraints or to use a constraint solver.
The most common areas of ConsIT applications were software product lines, fault detection and
characterization, test selection, and security and GUI testing.

Further details and data can be found in article [A.4], which was published in the journal
IEEE Access (Q1, IF 3.24). In this subproject, I provided feedback and comments regarding the
method of the survey, participated in data collection and processing and reviewed the text of the
article during its creation and �nalization.

4 Test Automation for Sub-optimally Structured Projects

Current test automation frameworks and test automation approaches are relatively e�cient when
the following conditions are satis�ed: (1) tests are well de�ned and (2) the SUT structure does
not change. However, these conditions are not met in many software development projects.
There are various reasons for this, such as frequent scope changes, obsolete, inconsistent, or even
missing design documentation resulting from a lack of resources or an inadequately structured
project management approach. Based on many reports on this topic (summarized in [87] and
from our own industry observations, this occurs relatively frequently.

The test automation concept can still be utilized e�ectively in these projects. However, doing
so requires the development of alternative strategies.

4.1 Motivation and State of the Art

Automated tests that simulate a user's actions in the front-end (FE) user interface of the SUT
(we use the term FE automated tests) generally overperform manual testing in several respects.
The tests can be repeatedly executed on various platform combinations with minimal cost, guar-
anteeing a de�ned sequence of test steps relative to manual tests; the tests can also be executed
in non-productive time slots in the software development cycle. However, automated testing
has its tradeo�s. Implementation of automated testing usually costs more than de�ning manual
test scenarios. Exactly de�ned sequences of test steps tend to be brittle when the SUT FE user
interface changes. Additionally, automated tests, unlike human testers, cannot overcome incon-
sistencies between their de�nition and the actual state of the SUT FE. This frequently leads to
interruption of the test �ow and can result in a false defect report. Consequently, the mainte-
nance costs associated with sub-optimally structured automated tests grow rapidly in the case
of frequent SUT changes. High maintenance costs are the major challenge associated with this
technology, based on both our own experience [A.8] and other reports in the literature [50, 32].

15

To create FE automated tests, two major strategies are currently used: (1) Record and
Replay, in which the test automation tool saves a sequence of test steps performed in the SUT
and replays them later as a test, and (2) Descriptive Programming, in which the automated test
is programmed by a test developer using a test automation application programming interface
(API).

These two strategies can be combined. Record and Replay is generally valuable for rapid
test creation. However, it often results in high maintenance costs for the created tests [21].
Descriptive Programming can reduce brittleness and thus the maintenance costs of the tests by
techniques such as employing reusable objects, adding more intelligence to SUT FE element
locators and using an extra con�gurable layer for element identi�cation. However, the initial
e�ort required to create the test scripts is greater.

Employing a reusable object in the test automation code has been a basic technique for almost
two decades [18], because code-fragment duplication is potentially problematic and can lead to
increased maintenance overhead and script brittleness. A number of frameworks addressing the
reusability issue have been presented [27, 13, 26]. Additionally, the Object Character Recognition
(OCR) approach has been proposed to reduce maintenance costs [20].

Although each of these platforms provides an individual level of support for reusable objects
in the test scripts, none have implemented a direct solution to reduce duplication in previously
recorded test scripts. Few studies have explored this area. In the BlackHorse project [74], tests
are recorded and their brittleness is subsequently reduced during post-processing, which analyzes
potentially reusable parts.

Regarding support for developers of the automated tests, the current Integrated Development
Environments (IDEs) are limited in their ability to detect code fragments, meaning the same
action in the test. The programming languages currently used for test automation allow a
number of variants for implementing identical test steps. An example in Java and the Selenium
WebDriver is provided below; the same test step, clicking on an element with ID �login�, is
represented by two alternative notations:

driver.findElement(By.id("login")).click();

Element e = driver.findElement(By.id("login")); e.click();

The current possibilities of code static analysis being employed in IDEs have reached their
limit at this point. An analysis speci�cally designed for automated tests should be provided
(Challenge 3.1). Such an analysis would also enable using the Record and Replay approach
and combining it with descriptive programming more e�ciently.

To de�ne a scenario for FE-based automated tests, manual test scenarios or design docu-
mentation are usually used. However, in numerous software projects, this documentation is
missing, is incomplete or obsolete. These projects still require an e�cient testing method. The
Exploratory Testing (ET) method is appropriate in these cases.

The e�ciency of ET strongly depends on the methods used, the documentation of the tests
performed and the parts of the SUT that have been explored, and the distribution of tasks among
individual testers of the team. The key factor is systematic documentation of the explored path
and examined test cases [59, 19]. Such documentation prevents the duplication of performed
tests, leads to the exploration of larger parts of the SUT, improves the accuracy of reporting
and gives better insights into the test coverage and the actual state of the SUT. However, poor
structuring of the ET process can lead to issues with test prioritization, selection of a suitable
test scope and repetition of tests [19, 8]. The particular SUT exploration strategy is also an
important factor [48], as is the positive role of teamwork in the overall e�ciency of the ET
process [59]. However, these factors have only been assessed for a manual version of the ET
process.

To conduct an SUT exploration strategy e�ciently, tests must be manually recorded and
documented, which can generate additional overhead for the testing team. This overhead can
outweigh the bene�ts gained by a more e�cient SUT exploration strategy. Thus, automating
the tasks related to test documentation would be helpful (Challenge 3.2).

16

Practically, constructing such a machine support means combining three �elds: (1) engineer-
ing of the SUT model, (2) generation of tests from the SUT model and (3) the ET technique.
The �rst two areas are closely related to the MBT approach. However, a signi�cant di�erence is
related to the fact that machine support of the ET requires reengineering the SUT model via a
continuous process that runs in parallel with the exploration of the SUT by the testers.

Several studies have explored reengineering the SUT model based on its actual state. From
a web applications viewpoint, the Guitar [56] project serves as an example. The Guitar crawls
a web application and creates a state machine model based on possible transitions in the SUT
user interface. An alternative for mobile applications, the MobiGuitar, has also been developed
[16]. Additionally, rather than the state machine diagram, a Page Flow Graph can be used [41].

Numerous methods can be used to generate the tests from the SUT model. UML, as an
extensively used modeling language, is also suitable for generation of the test cases [51]. Typically,
behavioral speci�cations diagrams (e.g., sequence, collaboration, and statechart and activity
diagrams [44]) are employed. Alternative modeling languages such as SysML [25] or IFML can be
used. Finally, mainstream programming languages, �nite machine notations, and mathematical
formalisms such as coq [90] have been utilized.

Test cases that can e�ciently guide the tester during the ET process will di�er from the
standard test cases produced by an MBT technique in several ways: (1) the Exploratory Tester
should have a certain level of freedom to use their experience to explore the SUT e�ciently (even
if this is recorded and guided), (2) previous exploration history and entered test data (including
from other team members) can help the tester decide on next steps, and (3) to make a test case
more e�ective, particular elements of the user interface must be shown explicitly to the tester.

Previous literature has provided only limited support for the ET using an automated frame-
work. Initial experiments that aid the ET using the MBT approach have been performed by
Schaefer [42]. In this approach, an initial SUT model is assumed to be present. Based on this
model, automated test cases are derived to exercise the SUT, but testers are given �exibility to
divert from the de�ned tests cases to exercise more variants or transitions.

4.2 Contribution

In the TestOptimizer project addressing Challenge 3.1, we provide a framework that enables
utilization of the advantages of both recording and descriptive programming for the creation of
FE automated tests. The relatively inexpensive creation of automated tests by recording can
be combined with refactoring the repetitive parts of these scripts to decrease their brittleness
and maintenance costs. We assist this refactoring process with an automated method based on
post-processing the recorded test scripts and identifying the potentially reusable parts. This
method can also be used in refactoring descriptively programmed test scripts in which few or no
reusable objects are identi�ed [A.5].

The TestOptimizer loads a set of automated test scripts and identi�es repeating code frag-
ments. Next, it suggests potentially reusable subroutines to the test script developer, including
their positions in the source code. The �nal decision concerning whether a suggested subroutine
is a suitable candidate for a reusable object is the responsibility of the developer. In this analysis,
we do not solely consider identical fragments of the source code. Such an approach would only
allow the detection of trivial cases of redundancy. The TestOptimizer analyzes the automated
test source code to �nd fragments that have the same semantics regarding the actions that the
automated tests perform in the SUT user interface. The source code is converted into an abstract
layer that re�ects the semantics of the test steps it contains. A test step signature concept is used
to build this abstraction of the automated test. The analyzed code can be written in a common
programming language with a test automation API (e.g., Java and Selenium WebDriver), or the
code can be an internal representation of test cases in a particular test automation tool (e.g.,
Selenese).

In the current project phase, the TestOptimizer does not automatically refactor the auto-
mated tests; the test developer maintains control of the source code throughout the process.
This feature, together with the �exibility of the proposed approach, di�erentiate the TestOpti-
mizer from BlackHorse [74], the previous project in this area that addresses a similar problem.
The BlackHorse framework employs a proprietary recording tool, which captures the test traces.

17

These test traces are converted to Java test script code, which ensures greater script stability
and minimizes the e�ects of change in the SUT FE.

In contrast, the TestOptimizer analyzes already created scripts and identi�es common subrou-
tines, which are suggested to the test developer. The framework is more platform independent.
By developing a particular test script converter module, the TestOptimizer can be used to ana-
lyze automated test scripts in other languages or test automation APIs. The proposed approach
does not imply any dependency of the created test automation code on an external library or
framework.

The experimental results show that applying the TestOptimizer framework can decrease test
creation and optimization costs. Recording the tests decreases test creation costs, while auto-
mated identi�cation of code refactoring opportunities decreases the subsequent test set optimiza-
tion costs. Moreover, optimization of the tests results in lower maintenance costs of the test set.
The greatest potential of the framework lies in reducing the test maintenance costs for larger
automated test sets that are recorded or sub-optimally structured.

A novelty of the proposed approach involves its post-processing method, which is based on
an abstraction of the analyzed tests that enables test engineers to identify truly relevant reusable
subroutines with greater accuracy than the common tools used for code refactoring. At this
stage, our semantic analysis is still approximate and can detect fewer refactoring opportunities
than a human. Nevertheless, the approach is already more e�cient than simply comparing source
code fragments, as shown by experiments in which the PMD tool was used as a baseline.

The results are presented in paper [A.5], which was published in the International Journal
of Software Engineering and Knowledge Engineering (Q4, IF 0.3). This work formed part of the
Ph.D. project of Martin Filipsky, for whom I served as the supervisor-specialist. I led Martin in
formulating the topic of his Ph.D. project, participated in designing the TestOptimizer framework
and the experiments, participated in the analysis and evaluation of the data and wrote part of
the paper presenting the proposed concept and experimental results.

In the Test Analysis SUT Process Information Reengineering (Tapir) project, which addresses
Challenge 3.2, we created a framework for automated support of the ET process. The frame-
work aims to improve the e�ciency of ET by automating activities related to (1) recording tests
previously exercised in the SUT, (2) decision support regarding parts of the SUT that will be
explored in later tests, and (3) organization of work for a team of exploratory testers [A.6].

Using a special web browser extension, the framework tracks testers' activity in the browser
and incrementally builds the SUT model, which is based on the SUT user interface. The model
can also be extended by various metadata entered by the testers, such as a prioritization of
SUT parts or equivalence classes for particular data inputs. Based on the actual position of the
tester in the SUT and the SUT model, the Tapir framework generates navigational test cases
and provides them to the testers. The parts that should be explored in the next step are also
highlighted in the SUT user interface in the web browser. The navigational test cases help the
testers explore the SUT more systematically and e�ciently, reducing possible duplication of tests
or test data. This method is particularly e�ective in cases with a more extensive team of testers.

The framework and SUT model are designed for web-based SUTs. Regarding teamwork
organization, the framework supports two principal roles: tester and test lead.

The tester is guided by the framework and explores the parts of the SUT that have not been
previously tested. For each tester, a navigational and test data strategy can be set by the test
lead. The navigational strategy determines the sequence of SUT functions to be explored during
the tests, which is suggested to the tester by the navigational test cases. The test data strategy
determines the test data to be entered in the SUT inputs (e.g., forms). The test data are also
suggested to the testers by the navigational test cases.

The test lead prioritizes the elements of the SUT front end, which are captured by the SUT
model. Priority can be added to pages, links and action elements of the SUT pages. A priority
can be set during the initial exploration of the SUT and changed later during the ET process.
The priorities are re�ected by navigational strategies. The test lead also de�nes equivalence
classes for the individual SUT input elements. When the equivalence classes are de�ned for
a particular input form on an SUT page, the test lead can let the Tapir framework generate
suitable test data combinations to be explored and remember these in the SUT model. In this

18

process, a CIT module is used.
The Tapir framework's navigational strategies are primarily focused on exploring new SUT

parts that have not been tested previously. Additionally, a navigational strategy focused on
regression testing and retesting defect �xes is available. In these strategies, the framework
considers the de�ned priorities, previous visits to the page or element, the complexity of the
following pages and other factors. Team variants of these strategies are also available, and they
help organize and automate the work of the individual testers.

The test data strategies available in the framework cover both exploration of new SUT parts
and support of regression testing and retesting of defect �xes. To suggest a suitable test data
combination to the tester, the test data strategies use the following: testing data previously used
in the SUT inputs, de�ned equivalence classes and test data combinations computed by the CIT
module.

To evaluate the e�ciency of the Tapir framework, we conducted �ve di�erent case studies.
During these studies, the framework was connected to the Mantis BT, Moodle, OFBiz and
JTrac open-source web systems and Pluto, a healthcare information system developed by a
recent software project. For Mantis BT, we injected arti�cial defects accompanied by a logging
mechanism. For the Pluto system, real software defects were present in the code, and we knew
the location of these defects from the project history. Using Mantis BT and Pluto, we conducted
a set of experiments with a group of exploratory testers. In these experiments, we compared the
e�ciency of manual ET with the ET supported by the Tapir framework. The ET supported by the
Tapir framework enabled the testers to explore more SUT functions and to explore components
of the SUT that were previously unreached. This e�ect was con�rmed by the number of SUT
pages explored per time unit. These results were relevant for rapid lightweight ET, in which
a tester's goal is to e�ciently explore new SUT functions and as many previously unexplored
functions as possible. With the support of the Tapir framework, testers performing exploratory
tests were able to reach and activate more of the unique inserted arti�cial defects; additionally,
the time needed to activate one unique defect decreased. All the improvements were observed
for both Mantis BT and the Pluto system.

The initial results achieved using the �rst version of the Tapir framework prototype are
presented in article [A.7], published in the journal Cluster Computing (Q2, IF 2.04). In this
thesis, I present an article describing the more recent version of the framework, including actual
experiments [A.6], which has been accepted to publication in journal IEEE Transactions on
Reliability (Q1, IF 2.79) in January 2018.

This work has been conducted as part of the Ph.D. project of Karel Frajtak, for whom I
served as the supervisor-specialist. I led Karel in formulating the topic of the Ph.D. project,
participated in the design of the Tapir framework and the experiments and participated in the
analysis and evaluation of the data. Further, I supervised the writing of the initial paper [A.7]
and wrote the part of the paper [A.6] that presents the proposed concept and experimental
results. Karel's Ph.D. thesis is now awaiting defense and received positive reviews from all three
appointed reviewers.

5 Summary and the Future Work

In this thesis, I present my research work in MBT and software test automation for the period
from 2013-2017. I focus on three principal tracks, for which I de�ned six challenges arising from
recent state in the �eld. I demonstrate how I have addressed these challenges by proposing
an algorithm, strategy or framework that aims to solve them. In the text, I also describe my
personal contribution to each of these proposals.

In the area of path-based test case generation strategies (Section 2), I proposed an
alternative de�nition of the SUT model, providing greater �exibility in modeling and formulating
new algorithms that re�ect the priorities of individual model components. Based on this model,
I formulated the PPT algorithm, which allows the combination of the TDL coverage criterion
with the PL criterion, determining which priorities in the SUT model will be covered by the
generated test cases. For Edge Coverage and some problem instances for the Edge-Pair Coverage
criterion, the PPT outperforms several previously published algorithms with respect to test set

19

optimality when prioritization of SUT model parts is considered. Next, I proposed a test set
selection strategy that uses a set of algorithms to generate the test cases for a particular problem
instance and then selects the optimal test set based on the de�ned optimality criteria. This
strategy proved to be a valid approach; as with the experimental data for Edge and Edge-Pair
Coverage, di�erent algorithms provided optimal results for di�erent problem instances.

In the area of Combinatorial and Constrained Interaction Testing (Section 3), I lead
empirical experiments investigating the e�ciency of the produced test cases in a real software
system. These data provide a valuable source of information that is applicable in the development
of new algorithms. Therefore, I conducted an experiment analyzing the e�ectiveness of 2−way
versus 3−way combinatorial test sets in a de�ned business scenario for a set of ten SUT instances
with di�erent injected defects, involving 8020 test runs in total. The recent trend to optimize the
combinatorial test sets requires examining the interaction between individual input parameters
of the SUT; currently, we have two experimental projects addressing this topic in the STILL
group. Although some initial reports have been published, there has not been a comprehensive
review paper focusing speci�cally on Constrained Interaction Testing and its research directions;
therefore, I participated in writing this review paper.

Regarding the area of Test automation frameworks that can assist in the test automation
of sub-optimally structured software development projects (Section 4), I supervised two Ph.D.
projects (in the role of supervisor-specialist) that aimed to create such frameworks. The TestOp-
timizer aims to help optimize user interface-based automated test scripts, leading to decreased
maintenance of these tests, which is a major issue for this technology. The framework searches
for code refactoring opportunities (common subroutines) in a set of test scripts. In contrast to
classical static code analyzers, TestOptimizer also detects subroutines that di�er in syntax but
perform the same actions when the test is executed. Compared to manual identi�cation of poten-
tial common subroutines, the automated analysis was less accurate, but signi�cantly faster. In
the Tapir project, combining MBT, Model Reengineering, and Exploratory Testing, we created
a framework that assists ET with the automated generation of navigational test cases by guiding
a team of exploratory testers through the SUT. A speci�c model of the SUT is created in real
time during the testing process, and the navigational test cases are generated dynamically based
on the actual state of testing and the selected navigational and test data strategy. Compared to
a manual ET, the framework is more e�ective in several aspects, such as the extent of explored
functions or the average e�ciency.

Numerous synergies are present between the research tracks discussed above. Test data com-
binations identi�ed by the Combinatorial and Constrained Interaction Testing techniques can
be entered as SUT inputs for decision points in the test cases generated by the path-based test
case generation strategies. The generated path-based test scenarios and the test data combina-
tions can be entered into a test automation architecture as parametrized tests, minimizing the
need to de�ne the automated tests manually (for instance, the CIT module is employed in the
Tapir framework to determine the test data combinations to be entered into the SUT). I am
currently participating in another experimental project in which Selenium tests are automati-
cally composed from a library of reusable test objects based on path-based test cases generated
by the Oxygen platform. The SUT con�guration variants to test can be reduced using the
ConsIT technique, considering the particular constraints of test bed setup and test automation
framework limitations during generation of the platform combinations. The empirical results
regarding the e�ciency of particular test cases gathered using a reporting mechanism in a test
automation framework can be used to further optimize a path-based or combinatorial regression
test. Thus, these investigations overlap in numerous ways. Exploring their synergies can lead to
more e�ective software testing methods.

5.1 Future Research Directions

For this reason, I consider all three tracks discussed in this thesis to be worthy of further inves-
tigation, especially in the context of testing IoT solutions, an area that has grown signi�cantly
in importance in recent years. A number of challenges must be addressed by researchers in
this domain. IoT solutions are characterized by increasing demands on the testing of security,

20

integration, a growing number of con�gurations or the IoT solutions under a limited or unstable
network connection [9, 33, 63].

However, based on a literature survey we recently conducted (part of a systematic mapping
study on IoT quality assurance methods that involved analysis of over 500 papers), the current
literature coverage of these issues is not su�cient. In addition to the security and privacy issues
and security testing [60] that have been the focus of numerous recent studies, many other quality
assurance related areas lack research on methods appropriate to the growing importance of the
IoT technology.

With colleagues, I reacted to this demand by preparing the Quality Assurance System project
for the Internet of Things Technology (funded by the Technology Agency of the Czech Republic
government in 2017), and by focusing on the development of IoT-speci�c testing techniques. In
the area of paths-based testing, I am currently attempting to develop a technique to generate test
cases that speci�cally focus on testing of an IoT solution under a limited or unstable connection.
The Combinatorial and Constrained Interaction testing strategies we focus on in our research
group are also applicable to solving the problem of testing a large number of con�gurations. In
the area of test automation frameworks, together with an industrial partner, we are developing
an innovative IoT test automation framework that combines unit integration and end-to-end
integration testing with simulation of part of the tested infrastructure. Despite the technological
and conceptual challenges and risks that such a hybrid approach involves, we strongly believe
that integrating these tests will enable more e�cient testing relative to maintaining the individual
tests in separate testbeds or test set-ups, as has been reported by a number of industrial partners
interviewed during the analytical phase of the project.

Considering not only the IoT technology but also other areas of information technology de-
velopment, work processes in numerous domains that depend on ICT systems must be backed
up by proper quality assurance techniques and methods. The principal concepts and techniques
used in software testing are valid for three decades. However, to function e�ectively, particular
techniques should be tailored to the contemporary state of the technology and software develop-
ment styles. The present demand for more e�ective and automated software quality assurance
techniques renders the MBT and related disciplines worthy of further research and development.

21

6 List of selected author's publications

[A.1] Miroslav Bures, and Bestoun S. Ahmed. Employment of Multiple Algorithms for Op-
timal Path-based Test Selection Strategy. Currently under review in Q1 impact factor
journal. Manuscript published at arXiv.org, 1802.08005, https://arxiv.org/abs/1802.08005,
22 Feb 2018.

[A.2] Miroslav Bures, Tomas Cerny, Karel Frajtak, and Bestoun S. Ahmed. Testing the
consistency of business data objects using extended static testing of CRUD matrices.
Cluster Computing, online, pages 1-14. 2017. (Q2, IF 2.04)

[A.3] Bures, Miroslav, and Bestoun S. Ahmed. On the e�ectiveness of combinatorial in-
teraction testing: A case study. In 2017 IEEE International Conference on Software
Quality, Reliability and Security (IEEE International Workshop on Combinatorial
Testing and its Applications, Proceedings companion volume), pages 69-76. IEEE,
2017.

[A.4] Bestoun S. Ahmed, Kamal Z. Zamli, Wasif Afzal, and Miroslav Bures. Constrained
Interaction Testing: A Systematic Literature Study. IEEE Access, 5, pages 25706-
25730. 2017. (Q1, IF 3.24)

[A.5] Miroslav Bures, Martin Filipsky, and Ivan Jelinek. Identi�cation of Potential Reusable
Subroutines in Recorded Automated Test Scripts. International Journal of Software
Engineering and Knowledge Engineering, 28(01), pages 3-36. 2018. (Q4, IF 0.3)

[A.6] Miroslav Bures, Karel Frajtak, and Bestoun S. Ahmed. Tapir: Automation Support
of Exploratory Testing Using Model Reconstruction of the System Under Test. Ac-
cepted in IEEE Transactions on Reliability, January 2018. (Q1, IF 2.79). Pre-print
published at arXiv.org, 1802.07983, https://arxiv.org/abs/1802.07983, 22 Feb 2018.

[A.7] Karel Frajtak, Miroslav Bures, and Ivan Jelinek. Exploratory testing supported by
automated reengineering of model of the system under test. Cluster Computing,
20(1), pages 855-865, 2017. (Q2, IF 2.04)

[A.8] Miroslav Bures. Automated testing. In Miroslav Bures, Miroslav Renda, and Michal
Dolezel, E�ective software testing, pages 179-203. Grada, Prague, 2016. (book in
Czech)

[A.9] Miroslav Bures, Tomas Cerny, and Matej Klima. Prioritized process test: More
e�ciency in testing of business processes and work�ows. In International Conference
on Information Science and Applications, Lecture Notes in Electrical Engineering
vol. 424, pages 585-593. Springer, 2017.

[A.10] Miroslav Bures. PCTgen: automated generation of test cases for application work-
�ows. In New Contributions in Information Systems and Technologies, Advances in
Intelligent Systems and Computing, vol. 353, pages 789-794. Springer, 2015.

Papers [A.1] to [A.6] are included as appendices of this thesis.

22

References

[1] Alsewari A. R. A. and Zamli K. Z. Design and implementation of a harmony-search-based
variable-strength t-way testing strategy with constraints support. Information and Software
Technology, 54(6):553�568, 2012.

[2] Alsewari A. R. A. and Zamli K. Z. A harmony search based pairwise sampling strategy for
combinatorial testing. International Journal of Physical Sciences, 7(7):1062�1072, 2012.

[3] Awad A., Decker G., and Lohmann N. Diagnosing and repairing data anomalies in process
models. In International Conference on Business Process Management, pages 5�16. Springer,
2009.

[4] Chandra A. and Singhal A. Study of unit and data �ow testing in object-oriented and
aspect-oriented programming. In Innovation and Challenges in Cyber Security (ICICCS-
INBUSH), 2016 International Conference on, pages 245�250. IEEE, 2016.

[5] Dwarakanath A. and Jankiti A. Minimum number of test paths for prime path and other
structural coverage criteria. In IFIP International Conference on Testing Software and
Systems, pages 63�79. Springer, 2014.

[6] Hervieu A., Marijan D., Gotlieb A., and Baudry B. Practical minimization of pairwise-
covering test con�gurations using constraint programming. Information and Software Tech-
nology, 71:129�146, 2016.

[7] Sahib M. A., Ahmed B. S., and Potrus M. Y. Application of combinatorial interaction
design for dc servomotor pid controller tuning. Journal of Control Science and Engineering,
2014:7, 2014.

[8] Shah S. M. A., Gencel C., Alvi U. S., and Petersen K. Towards a hybrid testing process uni-
fying exploratory testing and scripted testing. Journal of Software: Evolution and Process,
26(2):220�250, 2014.

[9] Whitmore A., Agarwal A., and Da Xu L. The internet of thingsâa survey of topics and
trends. Information Systems Frontiers, 17(2):261�274, 2015.

[10] Cohen M. B., Dwyer M. B., and Shi J. Constructing interaction test suites for highly-
con�gurable systems in the presence of constraints: a greedy approach. IEEE Transactions
on Software Engineering, 34(5):633�650, 2008.

[11] Cohen M. B., Gibbons P. B., Mugridge W. B., Colbourn C. J., and Collofello J. S. A
variable strength interaction testing of components. In Computer Software and Applications
Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual International, pages 413�418.
IEEE, 2003.

[12] Hoseini B. and Jalili S. Automatic test path generation from sequence diagram using genetic
algorithm. In Telecommunications (IST), 2014 7th International Symposium on, pages 106�
111. IEEE, 2014.

[13] Mu B., Zhan M., and Hu L. Design and implementation of gui automated testing framework
based on xml. In Software Engineering, 2009. WCSE'09. WRI World Congress on, volume 4,
pages 194�199. IEEE, 2009.

[14] Bryce R. C. and Colbourn C. J. Test prioritization for pairwise interaction coverage. In
Proceedings of the 1st International Workshop on Advances in Model-based Testing, A-MOST
'05, pages 1�7, New York, NY, USA, 2005. ACM.

[15] Nie C. and Leung H. A survey of combinatorial testing. ACM Computing Surveys, 43(2):1�
29, 2011.

[16] Amal�tano D., Fasolino A. R., Tramontana P., Ta B. D., and Memon A. M. Mobiguitar:
Automated model-based testing of mobile apps. Software, IEEE, 32(5):53�59, 2015.

23

[17] Borchmann D. Exploring faulty data. In International Conference on Formal Concept
Analysis, pages 219�235. Springer, 2015.

[18] Lonngren D. D. Reducing the cost of test through reuse. In AUTOTESTCON'98. IEEE
Systems Readiness Technology Conference., 1998 IEEE, pages 48�53. IEEE, 1998.

[19] Pfahl D., Yin H., Mäntylä M. V., and Münch J. How is exploratory testing used? a state-
of-the-practice survey. In Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, page 5. ACM, 2014.

[20] Alegroth E., Nass M., and Olsson H. H. Jautomate: A tool for system-and acceptance-
test automation. In Software testing, veri�cation and validation (icst), 2013 ieee sixth
international conference on, pages 439�446. IEEE, 2013.

[21] Alégroth E. and Feldt R. Industrial application of visual gui testing: Lessons learned. In
Continuous Software Engineering, pages 127�140. Springer, 2014.

[22] Sayyari F. and Emadi S. Automated generation of software testing path based on ant colony.
In Technology, Communication and Knowledge (ICTCK), 2015 International Congress on,
pages 435�440. IEEE, 2015.

[23] Wedyan F., Ghosh S., and Vijayasarathy L. R. An approach and tool for measurement of
state variable based data-�ow test coverage for aspect-oriented programs. Information and
Software Technology, 59:233�254, 2015.

[24] Denaro G., Margara A., Pezze M., and Vivanti M. Dynamic data �ow testing of object ori-
ented systems. In Proceedings of the 37th International Conference on Software Engineering-
Volume 1, pages 947�958. IEEE Press, 2015.

[25] Chang C. H., Lu C. W., Yang W. P., Chu W. C. C., Yang C. T., Tsai C. T., and Hsiung P.
A. A sysml based requirement modeling automatic transformation approach. In 2014 IEEE
38th International Computer Software and Applications Conference Workshops, pages 474�
479, July 2014.

[26] Kaur H. and Gupta G. Comparative study of automated testing tools: Selenium, quick test
professional and testcomplete. International Journal of Engineering Research and Applica-
tions, 3(5):1739�43, 2013.

[27] Nguyen D. H., Strooper P., and Süÿ J. G. Automated functionality testing through guis. In
Proceedings of the Thirty-Third Australasian Conferenc on Computer Science-Volume 102,
pages 153�162. Australian Computer Society, Inc., 2010.

[28] Carbonnel J., Huchard M., Miralles A., and Nebut C. Feature model composition assisted
by formal concept analysis. In ENASE: Evaluation of Novel Approaches to Software Engi-
neering, pages 27�37. SciTePress, 2017.

[29] Colbourn C. J., Kéri G., Soriano P. P. R., and Schlage-Puchta J.-C. Covering and
radius-covering arrays: Constructions and classi�cation. Discrete Applied Mathematics,
158(11):1158�1180, 2010.

[30] Colbourn C. J. and McClary D. W. Locating and detecting arrays for interaction faults.
Journal of Combinatorial Optimization, 15(1):17�48, 2008.

[31] De Grood D. J. Testgoal: Result-driven testing. Springer Science & Business Media, 2008.

[32] Kasurinen J., Taipale O., and Smolander K. Software test automation in practice: empirical
observations. Advances in Software Engineering, 2010, 2010.

[33] Kiruthika J. and Khaddaj S. Software quality issues and challenges of internet of things. In
2015 14th International Symposium on Distributed Computing and Applications for Business
Engineering and Science (DCABES), pages 176�179, Aug 2015.

24

[34] Küster J., Ryndina K., and Gall H. Generation of business process models for object life
cycle compliance. Business Process Management, pages 165�181, 2007.

[35] Myers G. J., Sandler C., and Badgett T. The art of software testing. John Wiley & Sons,
2011.

[36] O�utt J. and Ammann P. Graph coverage web application,
http://cs.gmu.edu:8080/o�utt/coverage/graphcoverage, 2017.

[37] O�utt J., Ammann P., and Li N. Source code of coverage web applications,
http://cs.gmu.edu/ o�utt/softwaretest/coverage-source/, 2015.

[38] Petke J., Cohen M. B., Harman M., and Yoo S. Practical combinatorial interaction testing:
Empirical �ndings on e�ciency and early fault detection. IEEE Transactions on Software
Engineering, 41(9):901�924, 2015.

[39] Petke J., Yoo S., Cohen M. B., and Harman M. E�ciency and early fault detection with
lower and higher strength combinatorial interaction testing. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 26�36, New
York, NY, USA, 2013. ACM.

[40] Poelmans J., Dedene G., Snoeck M., and Viaene S. Using formal concept analysis for the
veri�cation of process-data matrices in conceptual domain models. In Proceedings of the
IASTED International Conference on Software Engineering, pages 79�86. Acta Press, 2010.

[41] Polpong J. and Kansomkeat S. Syntax-based test case generation for web application.
In 2015 International Conference on Computer, Communications, and Control Technology
(I4CT), pages 389�393, April 2015.

[42] Schaefer C. J. and Do H. Model-based exploratory testing: A controlled experiment. In
Software Testing, Veri�cation and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on, pages 284�293. IEEE, 2014.

[43] Yan J. and Zhang J. An e�cient method to generate feasible paths for basis path testing.
Information Processing Letters, 107(3-4):87�92, 2008.

[44] Jena A. K., Swain S. K., and Mohapatra D. P. A novel approach for test case generation
from uml activity diagram. In 2014 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), pages 621�629, Feb 2014.

[45] Petersen K., Vakkalanka S., and Kuzniarz L. Guidelines for conducting systematic mapping
studies in software engineering: An update. Information and Software Technology, 64:1�18,
2015.

[46] Rose K., Eldridge S., and Chapin L. The internet of things: An overview. The Internet
Society (ISOC), pages 1�50, 2015.

[47] Inozemtseva L. and Holmes R. Coverage is not strongly correlated with test suite e�ective-
ness. In Proceedings of the 36th International Conference on Software Engineering, pages
435�445. ACM, 2014.

[48] Micallef M., Porter C., and Borg A. Do exploratory testers need formal training? an
investigation using hci techniques. In 2016 IEEE Ninth International Conference on Software
Testing, Veri�cation and Validation Workshops (ICSTW), pages 305�314, April 2016.

[49] Prabu M., Narasimhan D., and Raghuram S. An e�ective tool for optimizing the number of
test paths in data �ow testing for anomaly detection. In Computational Intelligence, Cyber
Security and Computational Models, pages 505�518. Springer, 2016.

[50] Ra� D. M., Moses K. R. K., Petersen K., and Mäntylä M. V. Bene�ts and limitations
of automated software testing: Systematic literature review and practitioner survey. In
Proceedings of the 7th International Workshop on Automation of Software Test, pages 36�
42. IEEE Press, 2012.

25

[51] Shirole M. and Kumar R. Uml behavioral model based test case generation: a survey. ACM
SIGSOFT Software Engineering Notes, 38(4):1�13, 2013.

[52] Utting M., Pretschner A., and Legeard B. A taxonomy of model-based testing approaches.
Software Testing, Veri�cation and Reliability, 22(5):297�312, 2012.

[53] Kacker R. N., Richard K. D., Lei Y., and Lawrence J. F. Combinatorial testing for software:
An adaptation of design of experiments. Measurement, 46(9):3745�3752, 2013.

[54] Li N., Li F., and O�utt J. Better algorithms to minimize the cost of test paths. In Software
Testing, Veri�cation and Validation (ICST), 2012 IEEE Fifth International Conference on,
pages 280�289. IEEE, 2012.

[55] Li N., Praphamontripong U., and O�utt J. An experimental comparison of four unit test
criteria: Mutation, edge-pair, all-uses and prime path coverage. In Software Testing, Ver-
i�cation and Validation Workshops, 2009. ICSTW'09. International Conference on, pages
220�229. IEEE, 2009.

[56] Nguyen B. N., Robbins B., Banerjee I., and Memon A. Guitar: an innovative tool for
automated testing of gui-driven software. Automated Software Engineering, 21(1):65�105,
Mar 2014.

[57] Trcka N., Van der Aalst W. M. P., and Sidorova N. Data-�ow anti-patterns: Discovering
data-�ow errors in work�ows. In CAiSE, volume 9, pages 425�439. Springer, 2009.

[58] Ammann P. and O�utt J. Introduction to software testing. Cambridge University Press,
2016.

[59] Raappana P., Saukkoriipi S., Tervonen I., and MÃntylÃ M. V. The e�ect of team exploratory
testing � experience report from f-secure. In 2016 IEEE Ninth International Conference on
Software Testing, Veri�cation and Validation Workshops (ICSTW), pages 295�304, April
2016.

[60] Jing Q., Vasilakos A. V., Wan J., Lu J., and Qiu D. Security of the internet of things:
Perspectives and challenges. Wireless Networks, 20(8):2481�2501, 2014.

[61] Srivastava P. R., Jose N., Barade S., and Ghosh D. Optimized test sequence generation from
usage models using ant colony optimization. International Journal of Software Engineering
& Applications, 2(2):14�28, 2010.

[62] Srivatsava P. R., Mallikarjun B., and Yang X. S. Optimal test sequence generation using
�re�y algorithm. Swarm and Evolutionary Computation, 8:44�53, 2013.

[63] Stojkoska B. L. R. and Trivodaliev K. V. A review of internet of things for smart home:
Challenges and solutions. Journal of Cleaner Production, 140:1454�1464, 2017.

[64] Sulaiman D. R. and Ahmed B. S. Using the combinatorial optimization approach for dvs
in high performance processors. In International Conference on Technological Advances in
Electrical Electronics and Computer Engineering (TAEECE), pages 105�109, 2013.

[65] Ahmed B. S., Sahib M. A., Gambardella L. M., Afzal W., and Zamli K. Z. Optimum design
of PIλ Dµ controller for an automatic voltage regulator system using combinatorial test
design. PLOS ONE, 11:1�20, 11 2016.

[66] Ahmed B. S., Sahib M. A., and Potrus M. Y. Generating combinatorial test cases using sim-
pli�ed swarm optimization (sso) algorithm for automated gui functional testing. Engineering
Science and Technology, an International Journal, 17(4):218�226, 2014.

[67] Ahmed B. S., Gambardella L. M., Afzal W., and Zamli K. Z. Handling constraints in
combinatorial interaction testing in the presence of multi objective particle swarm and mul-
tithreading. Information and Software Technology, 86:20�36, 2017.

26

[68] Ahmed B. S., Abdulsamad T. S., and Potrus M. Y. Achievement of minimized combina-
torial test suite for con�guration-aware software functional testing using the cuckoo search
algorithm. Information and Software Technology, 66(0):13�29, 2015.

[69] Ahmed B. S. and Zamli K. Z. A review of covering arrays and their application to software
testing. Journal of Computer Science, 7(9):1375�1385, 2011.

[70] Ahmed B. S. and Zamli K. Z. A variable strength interaction test suites generation strategy
using particle swarm optimization. Journal of Systems and Software, 84(12):2171�2185,
2011.

[71] Ahmed B. S., Zamli K. Z., and Lim C. P. Constructing a t-way interaction test suite using
the particle swarm optimization approach. International Journal of Innovative Computing,
Information and Control (IJICIC), 8(1):431�452, 2012.

[72] Ali S., Briand L. C., Hemmati H., and Panesar-Walawege R. K. A systematic review
of the application and empirical investigation of search-based test case generation. IEEE
Transactions on Software Engineering, 36(6):742�762, 2010.

[73] Anand S., Burke E. K., Chen T. Y., Clark J., Cohen M. B., Grieskamp W., Harman M.,
Harrold M. J., Mcminn P., et al. An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and Software, 86(8):1978�2001, 2013.

[74] Carino S., Andrews J. H., Goulding S., Arunthavarajah P., and Hertyk J. Blackhorse:
creating smart test cases from brittle recorded tests. Software Quality Journal, 22(2):293�
310, 2014.

[75] Eldh S., Hansson H., Punnekkat S., Pettersson A., and Sundmark D. A framework for com-
paring e�ciency, e�ectiveness and applicability of software testing techniques. In Testing:
Academic and Industrial Conference-Practice And Research Techniques, 2006. TAIC PART
2006. Proceedings, pages 159�170. IEEE, 2006.

[76] Ghiduk A. S. Automatic generation of basis test paths using variable length genetic algo-
rithm. Information Processing Letters, 114(6):304�316, 2014.

[77] Hoskins D. S., Colbourn C. J., and Montgomery D. C. Software performance testing using
covering arrays: E�cient screening designs with categorical factors. In Proceedings of the
5th International Workshop on Software and Performance, WOSP '05, pages 131�136, New
York, NY, USA, 2005. ACM.

[78] Meda H. S., Sen A. Kumar, and Bagchi A. On detecting data �ow errors in work�ows.
Journal of Data and Information Quality (JDIQ), 2(1):4, 2010.

[79] Moser S., Martens A., Gorlach K., Amme W., and Godlinski A. Advanced veri�cation
of distributed ws-bpel business processes incorporating cssa-based data �ow analysis. In
Services Computing, 2007. SCC 2007. IEEE International Conference on, pages 98�105.
IEEE, 2007.

[80] Neto P. A. D. M. S., do Carmo Machado I., McGregor J. D., de Almeida E. S., and de Lemos
Meira S. R. A systematic mapping study of software product lines testing. Information and
Software Technology, 53(5):407�423, 2011.

[81] Shamshiri S., Just R., Rojas J. M., Fraser G., McMinn P., and Arcuri A. Do automatically
generated unit tests �nd real faults? an empirical study of e�ectiveness and challenges (t).
In Automated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference
on, pages 201�211. IEEE, 2015.

[82] Koomen T., Broekman B., van der Aalst L., and Vroon M. TMap next: for result-driven
testing. Uitgeverij kleine Uil, 2013.

27

[83] Shiba T., Tsuchiya T., and Kikuno T. Using arti�cial life techniques to generate test
cases for combinatorial testing. In Computer Software and Applications Conference, 2004.
COMPSAC 2004. Proceedings of the 28th Annual International, pages 72�77. IEEE, 2004.

[84] Su T., Wu K., Miao W., Pu G., He J., Chen Y., and Su Z. A survey on data-�ow testing.
ACM Computing Surveys (CSUR), 50(1):5, 2017.

[85] Arora V., Bhatia R., and Singh M. Synthesizing test scenarios in uml activity diagram using
a bio-inspired approach. Computer Languages, Systems & Structures, 2017.

[86] Kuliamin V. V. and Petukhov A. A survey of methods for constructing covering arrays.
Programming and Computer Software, 37(3):121�146, 2011.

[87] Chen X., Gu Q., Li A., and Chen D. Variable strength interaction testing with an ant colony
system approach. In Software Engineering Conference, 2009. APSEC'09. Asia-Paci�c, pages
160�167. IEEE, 2009.

[88] Qu X., Cohen M. B., and Woolf K. M. Combinatorial interaction regression testing: a study
of test case generation and prioritization. In IEEE International Conference on Software
Maintenance, ICSM 2007, pages 255�264. IEEE Computer Society, 2007.

[89] Sun S. X., Zhao J. L., Nunamaker J. F., and Sheng O. R. L. Formulating the data-�ow
perspective for business process management. Information Systems Research, 17(4):374�391,
2006.

[90] Paraskevopoulou Z., Hritcu C., Denes M., Lampropoulos L., and Pierce B. C. Foundational
Property-Based Testing, pages 325�343. Springer International Publishing, Cham, 2015.

[91] Zamli K. Z, Din F., Kendall G., and Ahmed B. S. An experimental study of hyper-heuristic
selection and acceptance mechanism for combinatorial t-way test suite generation. Infor-
mation Sciences, 399:121�153, 2017.

[92] Zamli K. Z., Din F., Baharom S., and Ahmed B. S. Fuzzy adaptive teaching learning-
based optimization strategy for the problem of generating mixed strength t-way test suites.
Engineering Applications of Arti�cial Intelligence, 59:35�50, 2017.

[93] Zamli K. Z., Klaib M. F. J., Younis M. I., Isa N. A. M., and Abdullah R. Design and
implementation of a t-way test data generation strategy with automated execution tool
support. Information Sciences, 181(9):1741�1758, 2011.

[94] Zamli K. Z, Alkazemi B. Y, and Kendall G. A tabu search hyper-heuristic strategy for t-way
test suite generation. Applied Soft Computing, 44:57�74, 2016.

28

7 Appendix A: Employment of Multiple Algorithms for Op-

timal Path-based Test Selection Strategy

[A.1] Miroslav Bures, and Bestoun S. Ahmed. Employment of Multiple Algorithms for Op-
timal Path-based Test Selection Strategy. Currently under review in Q1 impact factor
journal. Manuscript published at arXiv.org, 1802.08005, https://arxiv.org/abs/1802.08005,
22 Feb 2018.

29

1

Employment of Multiple Algorithms for Optimal
Path-based Test Selection Strategy

Miroslav Bures and Bestoun S. Ahmed

Abstract—Executing various sequences of system functions in
a system under test represents one of the primary techniques in
software testing. The natural way to create effective, consistent
and efficient test sequences is to model the system under test and
employ an algorithm to generate the tests that satisfy a defined
test coverage criterion. Several criteria of test set optimality can
be defined. In addition, to optimize the test set from an economic
viewpoint, the priorities of the various parts of the system model
under test must be defined. Using this prioritization, the test
cases exercise the high priority parts of the system under test
more intensely than those with low priority. Evidence from the
literature and our observations confirm that finding a universal
algorithm that produces an optimal test set for all test coverage
and test set optimality criteria is a challenging task. Moreover,
for different individual problem instances, different algorithms
provide optimal results. In this paper, we present a path-based
strategy to perform optimal test selection. The strategy first
employs a set of current algorithms to generate test sets; then,
it assesses the optimality of each test set by the selected criteria,
and finally, chooses the optimal test set. The experimental results
confirm the validity and usefulness of this strategy. For individual
instances of 50 system under test models, different algorithms
provided optimal results; these results varied by the required
test coverage level, the size of the priority parts of the model,
and the selected test set optimality criteria.

Index Terms—Model-based Testing; Path-based Test Scenar-
ios; Test Set Optimization; Directed Graph; Edge Coverage;
Edge-Pair Coverage

I. INTRODUCTION

THE natural way to construct a test case is to chain a
sequence of specific calls to various functions of the

system under test (SUT). Whether designing a method flow,
or API calls are used for an integration test, or a test scenario
is designed for a manual business end-to-end test, following
a systematic approach that generates consistent and effective
test sequences is essential. The field of model-based testing
provides a solution for this issue through which we first model
a particular SUT process or workflow in a suitable notation
and then use an appropriate algorithm to generate the flows
(i.e., path-based test cases).

To generate the path-based test cases systematically and
consistently, a SUT model based on a directed graph is used
[1]. Several algorithms have been presented (e.g., [2], [3], [4],
[5], [6], [7]) to solve this problem. However, based on both

M. Bures, Software Testing Intelligent Lab (STILL), Department of
Computer Science, Faculty of Electrical Engineering Czech Technical Uni-
versity, Karlovo nam. 13, 121 35 Praha 2, Czech Republic, (email: bu-
resm3@fel.cvut.cz)

B. Ahmed, Software Testing Intelligent Lab (STILL), Department of
Computer Science, Faculty of Electrical Engineering Czech Technical Uni-
versity, Karlovo nam. 13, 121 35 Praha 2, Czech Republic, (email: al-
beybes@fel.cvut.cz)

evidence from the literature and our experiments while devel-
oping new algorithms to solve this problem, it is challenging
task to find a universal algorithm that can generate an optimal
test set for all instances. Not only do individual problem
instances (particular SUT models) differ but also different
test set optimality criteria can be formulated [3], [1], [8]. A
significant finding here addresses the possibility for creating a
universal algorithm that satisfies multiple optimality criteria.
This task is complicated and must consider the different test
coverage criteria that have been defined, which span a range
from All Node Coverage to All Path Coverage, and individual
algorithms differ in their ability to produce test sets that satisfy
these different criteria [7].

The complexity of the problem increases when individual
parts of the SUT model should be tested at different priority
levels. For instance, consider a complex workflow in an
information system that must be covered by path-based test
scenarios. Only selected parts of the workflow require cover-
age by high-intensity test scenarios, while for the remaining
parts, lightweight tests are sufficient to optimize the test set
and reduce the testing costs. The priorities can captured by
the test requirements [1], [3] or by defining edge weights in
the model [9]. However, to reflect the priorities captured by
edge weights when generating test cases, alternative strategies
must be defined because the current algorithms provide near
optimum results only for non-prioritized SUT models and
can be suboptimal when solving this type of problem for
prioritized SUT models.

To address the issues described above, in this study, we
employ an approach based on combining current algorithms,
including both our own work in this area [9] and selected
algorithms previously published in the literature [3], [1]. The
strategy, which includes these algorithms, relies on input from
the tester as follows. The tester first creates a SUT model,
defines the priority parts of the model, and specifies the
test coverage criteria. Then, the tester selects the test set
optimality criteria from a set of options (details are provided
in Section III-B3). This strategy uses all the algorithms to
generate different test sets based on the SUT model. Then,
based on the test set optimality criteria, the best test set is
selected and provided to the test analyst. We implemented
this test case generation strategy in the latest version of the
experimental Oxygen Model-based Testing platform1 devel-
oped by the STILL group. In this paper, we present the details
of this strategy and its results for 50 SUT models using Edge
Coverage and Edge-Pair Coverage criteria and for 16 different
test set optimality criteria (including an optimality function

1http://still.felk.cvut.cz/oxygen/

ar
X

iv
:1

80
2.

08
00

5v
1

 [
cs

.S
E

]
 2

2
Fe

b
20

18

30

2

and a sequence-selection strategy composed from additional
test set optimality indicators). These data can also be used to
compare the test sets produced by the algorithms.

The paper is organized as follows. Section II defines the
problem; then, it provides an overview of the test coverage
criteria used to determine the intensity of the test set, and
finally, it discusses possible test set optimality criteria. Section
III provides the details of the process for selecting an optimal
test set based on the optimality criteria. Section IV presents
the experimental method and the acquired data. Section V
discusses the results and Section VI analyzes possible threats
to validity. Section VII summarizes the relevant related work.
Finally, Section VIII concludes this paper.

II. PROBLEM DEFINITION

As mentioned previously, the strategy presented in this
paper takes a SUT model as input. Here, the SUT process
is modeled as a directed graph G = (N,E), where N is a set
of nodes, N 6= ∅, and E is a set of edges. E is a subset of
N ×N . In the model we define one start node ns ∈ N . The
set Ne ⊆ N contains the end nodes of the graph, and Ne 6= ∅
[1].

The SUT functions and decision points are mapped to G
depending on the level of abstraction. In addition, the SUT
layer for which we prepare test cases plays an essential role
in the modeling. As an example, we can provide data-flow
testing at the code level or design an end-to-end (E2E) high-
level business-process test set. More information about this
topic appears in V.

The test case t is a sequence of nodes n1, n2, .., nn, with
a sequence of edges e1, e2, .., en−1, where ei = (ni,ni+1),
ei ∈ E, ni,∈ N , ni+1 ∈ N . The test case t starts with the start
node ns (n1 = ns) and ends with a G end node (nn ∈ Ne)
. We can denote the test case t as a either sequence of nodes
n1, n2, .., nn, or a sequence of edges e1, e2, .., en−1. The test
set T is a set of test cases.

To determine the required the test coverage, we define a
set of test requirements R. Generally, a test requirement is a
path in G that must be a sub-path of at least one test case
t ∈ T . The test requirements can be used either to (1) define
the general intensity of the test cases or (2) to express which
parts of the SUT model G are considered as priorities to be
covered by test cases.

The fact that the test requirements can be used either to
determine the overall intensity of the test set T or to express
which parts of the SUT model G should be tested at a higher
priority leads us to adopt an alternative definition of the SUT
model. This definition supports formulation of algoriths which
allow determining testing intensity and expressing priorities in
parallel [9]. Moreover, it uses a multigraph instead of a graph
as a SUT model, which gives test analysts more flexibility
when modeling SUT processes (this issue is discussed further
in Section V). In addition, using more priority levels is
natural in the software development process [10]; using test
requirements for prioritization results in algorithms being able
to work with two priority levels only, which could restrict the
development of further and possibly more effective algorithms.

Our alternative definition of the SUT model is as follows.
We model a SUT process as a weighted multigraph G =
(N,E, s, t), where N is a set of nodes, N 6= ∅, and E is a set
of edges. Here, s : E → N assigns each edge to its source
node and t : E → N assigns each edge to its target node. We
define one start node ns ∈ N . The set Ne ⊆ N contains
the end nodes of the multigraph, Ne 6= ∅. For each edge
e ∈ E (resp. node n ∈ N), a priority(e) (resp. priority(n))
is defined, where priority(e) ∈ {high,medium, low} and
priority(n) ∈ {high,medium, low}. When p is not defined,
the default low value is used. Eh is a set of high-priority
edges; Em is a set of medium-priority edges; and El is a set
of low-priority edges, where Eh∪Em∪El = E, Eh∩Em = ∅,
Em ∩ El = ∅, Eh ∩ El = ∅.

Priority p reflects the importance of the edge to be tested.
The test analyst determines the priority based on a risk
prioritization technique [11] or a technique that combines risk
assessment with information regarding the internal complexity
of the SUT or the presence of defects in previous SUT versions
[10]. To determine the intensity of the test set T , test coverage
criteria are used.

A. Test Coverage Criteria

Several different test coverage criteria have been defined
for T . For instance, All Edge Coverage (or Edge Coverage)
requires each edge e ∈ E to be present in the test set T
minimally once. Alternatively, All Node Coverage requires
each node n ∈ N to be present in test set T at least once.
To satisfy the Edge-Pair Coverage criterion, the test set T
must contain each possible pair of adjacent edges in G [1].

The All Paths Coverage (or Complete Path Coverage) re-
quires that all possible paths in G, starting from ns and ending
at any node of Ne, be present in test set T . Such a test set can
contain considerable redundancy. To reduce this redundancy,
the Prime Path Coverage criterion is used. To satisfy the Prime
Path Coverage criterion, each reachable prime path in G must
be a sub-path of a test case t ∈ T . A path p from e1 to e2is
prime if (1) p is simple, and (2) p is not a sub-path of any other
simple path in G. A path p is simple when no node n ∈ N
is present more than once in p (i.e., p does not contain any
loops); the only exception is e1 and e2, which can be identical
(in other words, p itself can be a loop) [1].

Sorted by the intensity of the test cases, All Node Coverage
is the weakest option, followed by All Edge Coverage, Edge-
Pair Coverage and Prime Path Coverage. The All Paths
Coverage lies at the other end of the spectrum [1], because
it implies the most intense test cases. However, due to the
high number of test case steps, this option is not practicable
in most software development projects. This problem can be
also faced by Prime Path Coverage: for many routine process-
testing tasks, this level of test coverage can be too extensive.

Test coverage criteria can also be specified by the Test Depth
Level (TDL) [12]. TDL = 1 when ∀e ∈ E the edge e appears
at least once in at least one test case t ∈ T . TDL = x when
the test set T satisfies the following conditions: For each node
n ∈ N , Pn is a set of all possible paths in G starting with an
edge incoming to the decision point n, followed by a sequence

31

3

of x− 1 edges outgoing from the node n. Then, ∀n ∈ N the
test cases cases in test set T contain all paths from Pn. When
TDL = 1, it is equivalent to All Edge Coverage, and when
TDL = 2, it is equivalent to Edge-Pair Coverage. All the
coverage criteria in this section are defined in the same way
for G as well as for G.

To determine the testing priority in selected parts of the
SUT processes, we define a Priority Level (PL) for G. PL ∈
{high,medium}. PL = high when ∀e ∈ Eh the edge e is
present at least once in at least one test case t ∈ T . Further,
PL = medium when ∀e ∈ Eh ∪Em the edge e is present at
least once in at least one test case t ∈ T . When a test set T
satisfies the All Edge Coverage, it also satisfies PL.

In the test case generation strategies we evolve, the PL can
be combined with yet another test coverage criteria such as
TDL [9] or Prime Path Coverage (refer to Section III-B4). In
these cases, PL reduces the test coverage by TDL or Prime
Paths Coverage to only the G parts, which are defined as the
priority. It allows optimizing the test cases to exercise only
the priority parts of the SUT processes or workflows.

B. Test Set Optimality Criteria

Various optimality criteria for T have been discussed in the
literature (e.g., [3], [8]). Table I lists the optimality criteria
used in this paper as defined for SUT model G. Parts of these
criteria can also be defined for G which is captured in Table
I in the column “Applicable to.”

Individual test set optimality criteria can be combined. In
this paper, we explore two possible methods: combining the
optimality criteria to a formula and evaluating the test set T
using a sequence of criteria. The following section provides
more detail on the selection of the optimal test set and how
these methods can be used successfully.

III. SELECTING AN OPTIMAL TEST SET

To obtain an optimal test set T for SUT model G along
with test coverage and test set optimality criteria, we conduct
a sequence of three main steps. First, we select a set of
algorithms and their suitable input parameters to generate the
T for G, the test coverage, and the test set optimality criteria.
Then, we run these selected algorithms to produce the test sets
T1..Tm. Finally, we analyze the test sets T1..Tm and select the
test set T that has the best value of the optimality criteria. The
inputs to this process are as follows:

1) SUT model G
2) Test coverage criteria from the following options:

a) Test intensity from the following options: Edge
Coverage, Edge-Pair Coverage, TDL (where
TDL > 2, because TDL = 1 is equivalent to
Edge Coverage and TDL = 2 is equivalent to
Edge-Pair coverage), and Prime Path Coverage.

b) Coverage of the G priority parts by Priority Level
(PL) as defined in Section II-A.

3) Test set optimality criterion from the options defined in
Section II-B and Table I.

The output of the process is an optimal test set T , that satisfies
the test coverage criterion.

Fig. 1. Main steps of the proposed test case generation strategy

A. Included Algorithms

In the described strategy, we use the algorithms listed in
Table II.

We used the Oxygen Model-based Testing experimental
platform2 (formerly PCTgen) [13] to implement the proposed
strategy. Our research team implemented process Cycle Test
(PCT) and Prioritized Process Test (PPT). We also imple-
mented the Brute Force Solution (BF) algorithm based on the
pseudocode published by Li et al. [3]. The implementations
of the Set-Covering Based Solution (SC) and Matching-Based
Prefix Graph Solution (PG) algorithms is based on the source
code by Ammann and Offutt [14]. The Set-Covering Based
Solution with Test Case Reduction (RSC) consists of the Set-
Covering Based Solution part and our implementation of the
test set reduction part (further specified in Section III-B4).

The role of the PCT algorithm is only to provide information
on how many test cases and test steps are in a test set T for
a particular SUT model G when the SUT model parts are not
prioritized.

B. Test Set Generation Process

The strategy to determine the optimal test set T by the
selected test set optimality criterion consists of five main steps,
which are summarized in Algorithm 1.

Figure 1 depicts the overall process. The process inputs are
marked in blue while the process outputs are marked in green.

In the Oxygen platform, the T is presented to the user, as
well as T1..Tm. For each of T1..Tm , Oxygen also provides the
values of the optimality criteria. In the following subsections,
we explain these individual steps in more detail.

1) Conversion of G to G and R: For the BF, SC, PG and
RSC algorithms, we need to convert graph G to graph G and
a set of test requirements, R. The multigraphG is equivalent
to graph G, when (1) edge priorities (priority(e)) and node

2http://still.felk.cvut.cz/oxygen/

32

4

TABLE I
TEST SET T OPTIMALITY CRITERIA

Optimality criterion Description Applicable to

| T | Number of test cases in the test set G and G
edges(T) Total number of edges in the test cases of a test set T , edges can repeat G and G
edgesh(T) Total number of edges of priority high in the test cases of a test set T , edges can

repeat
G

edgesm(T) Total number of edges of priority high and medium in the test cases of a test
set T , edges can repeat

G

uedges(T) Total number of unique edges in the test cases of a test set T G and G
uedgesh(T) Total number of unique edges of priority high in the test cases of a test set T G
uedgesm(T) Total number of unique edges of priority high and medium in the test cases of a

test set T
G

nodes(T) Total number of nodes in the test cases of a test set T , nodes can repeat G and G
unodes(T) Total number of unique nodes in the test cases of a test set T G

er(T) =
uedges(T)

|E| .100% Ratio of unique edges contained in the test cases of a test set T . A lower value of
er(T) means more optimal test set, because less unique edges are present in the
test cases and these unique edges can represent extra costs for preparation of the

detailed test scenarios.

G and G

eh(T) =
edgesh(T)

edges(T)
.100% Ratio of edges of priority high and all edges in the test cases of a test set T . A

higher value of eh(T) means more optimal test set, because less edges which do
not have priority high (thus are not necessary to test) are present in the test cases.

G

em(T) =
edgesm(T)
edges(T)

.100% Ratio of edges of priority high and medium and all edges in the test cases of a
test set T . A higher value of eh(T) means more optimal test set, because less

edges which do not have priority high and medium (thus are not necessary to
test) are present in the test cases.

G

ueh(T) =
uedgesh(T)

edges(T)
.100% The same as eh(T), only unique edges are taken in acount G

uem(T) =
uedgesm(T)

edges(T)
.100% The same as em(T), only unique edges are taken in acount G

TABLE II
ALGORITHMS USED TO GENERATE T

Code Name SUT model Reference

PCT Process Cycle Test G Koomen et al.[12], Bures
[13]

PPT Prioritized Process Test G Bures et al. [9]
BF Brute Force Solution G, set of test requirements R Li, Li and Offut [3]
SC Set-Covering Based Solution G, set of test requirements R Li, Li and Offut [3]
PG Matching-Based Prefix Graph Solution G, set of test requirements R Li, Li and Offut [3]

RSC Set-Covering Based Solution with Test
Set Reduction

G for the whole algorithm,G and R for its SC
part

Specified in Section III-B4

Algorithm 1: The main process of test set generation
Input: G, test coverage criteria, PL ∈ {high,medium}, test set optimality criterion
Output: test set T

1 Convert G to G and R for the BF, SC, PG and RSC algorithms (refer to Section III-B1)
2 Determine the set of algorithms that are suitable for generating the T for G (refer to Section III-B1)
3 Execute the selected set of algorithms with G (or with G and R, which correspond to G). The output of this step are the

test sets T1 . . . Tm

4 Compute the values of single test set optimality criteria for T1 . . . Tm (refer to Table I and Section III-B3), which will be
employed in step 5.

5 Select the optimal T of T1 . . . Tm as determined by the test set optimality criterion (refer to Section III-B3)

priorities (priority(n)) are not considered, and (2) there are
no parallel edges in G. This conversion implies that when
creating G, no parallel edges can be used, which can restrict
the modeling possibilities that using a multigraph as a SUT
process abstraction makes possible. However, this restriction
can be solved without losing the applicability of the proposed
strategy by modeling the parallel edges as graph nodes.

A set of test requirements R is created by a method specified
in Table III.

2) Algorithms Selection: Table IV specifies the process of
selecting algorithms by the specified test coverage criteria
(algorithm selection configuration as depicted in Fig. 1).

For the Edge Coverage case (TDL = 1), the BF, SC and

PG algorithms reflect the edge priorities in G via a set of test
requirements, R, generated from G (refer to Table III). In both
conversion types, the Atomic and the Sequence conversions are
used for each of these algorithms. In contrast, PPT and RSC
work directly with the edge priorities in G ([9] and Section
III-B4).

For the Edge-Pair Coverage case (TDL = 2), the PPT
and RSC algorithms are comparable candidates when the PL
criterion reduces the test set. The RSC satisfies the Edge-
Pair Coverage criterion, because the test set produced by this
algorithm satisfies the Prime Paths Coverage criterion [1]. The
PPT algorithm is designed to satisfy 1 ≤ TDL ≤ n, where

33

5

TABLE III
METHOD OF CREATION OF THE TEST REQUIREMENTS R FROM G

Test coverage: test intensity Method of R
creation

PL = high PL = medium

Edge Coverage
(TDL = 1)

Atomic
conversion

R is a set of all G adjacent
node pairs e = (ni, ni+1)

for each e ∈ Eh

R is a set of all G adjacent
node pairs e = (ni, ni+1)

for each e ∈ Eh ∪ Em

Edge Coverage
(TDL = 1)

Sequence
conversion

R is a set of paths in G,
priority(e) = highfor

each e ∈ p ∈ R

R is a set of paths in G,
priority(e)∈

{high,medium}for each
e ∈ p ∈ R

Edge-Pair Coverage
(TDL = 2)

A set Epair contains all possible pairs of adjacent edges of G. Then, R is a
set of all paths (ni, ni+1, ni+2), such that ei = (ni,, ni+1),

ei+1 = (ni+1,ni+2) for each (ei, ei+1) ∈ Epair . This process is not
influenced by PL.

TDL = x,
x > 2

A set Ex contains all possible paths of G consisting of x adjacent edges.
Then, R is a set of all paths (ni, ni+1, ni+2, .., nx+1), such that

ei = (ni,, ni+1), ei+1 = (ni+1,ni+2), ... , ex = (nx,nx+1) for each
(ei, ei+1, .., ex) ∈ Epair . This process is not influenced by PL.

Prime Path Coverage R is a set of all possible prime paths in G (applies to BF, SC and PG). This
process is not influenced by PL.

TABLE IV
ALGORITHM SELECTION CONFIGURATION

Test set reduction: coverage of priority parts of G
Test coverage: test intensity PL = high PL = medium not reduced by PL

Edge Coverage
(TDL = 1)

PPT
RSC
BF
SC
PG

PPT
RSC
BF
SC
PG

PCT

Edge-Pair Coverage
(TDL = 2)

PPT
RSC

PPT
RSC

PCT
BF
SC
PG

TDL > 2 PPT PPT PCT
BF
SC
PG

Prime Path Coverage RSC RSC BF
SC
PG

n is the length of the longest path in G (excluding the loops)
[9]. Thus, it satisfies the Edge-Pair Coverage criterion, which
is equivalent to TDL = 2.

3) Selection of the Best Test Set: After the selected algo-
rithms have produced the test setsT1..Tm, our strategy selects
the test set T , which has the best value of the optimality
criteria. The test analyst can select the following options:

1) Selection by single optimality criterion: A specific
optimality criterion is specified on input. Then, the
test set T that has the best value according to the
specified optimality criterion is selected. The following
options are available: | T |, edges(T), edgesh(T),
edgesm(T), uedges(T), uedgesh(T), uedgesm(T),
nodes(T), unodes(T), er(T) (the T with the lowest
value of these criteria is considered as optimal) and
eh(T), em(T), ueh(T) and uem(T) (the T with the
highest value of these criteria is considered as optimal).
However, a test set T1 could be optimal according to one
criterion, for instance | T1 |, but be strongly sub-optimal
according to another criterion, for instance edges(T1). In
such situations, a test set T2 with a slightly higher| T2 |
value but whose edges(T2) were closer to the optimum
would be a better choice. In these situations, we use the
optimality function explained below.

2) Selection by the optimality function: The optimality
function selects the best test set using several concurrent
optimality criteria, and it is defined as o(Tx) = w|T |(1−

|Tx|∑
T∈T1..Tm

|T |
m

) + wedges(T)(1 − edges(Tx)∑
T∈T1..Tm

edges(T)

m

) +

wuedges(T)(1− uedges(Tx)∑
T∈T1..Tm

uedges(T)

m

). The constants w|T |,

wedges(T) and wuedges(T) determine the weight of each
specific optimality criterion, 0 ≤ w|T | ≤ 1, 0 ≤
wedges(T) ≤ 1, 0 ≤ wuedges(T) ≤ 1 and w|T | +
wedges(T) + wuedges(T) = 1.

3) Sequence selection: In this approach, a sequence of
optimality criteria c1..cn, is specified on input. When
multiple test sets in T1..Tm have the same best value of
c1, the best T selection is then based on the c2 criterion.
If multiple test sets still have the same best value of c2,
the selection of the final T is based on c3 and so forth.

4) RSC Algorithm: The pseudocode for the Set-Covering
Based Solution with Test Set Reduction (RSC) is specified in
Algorithm 2.

The principle underlying the RSC is to first employ the
SC algorithm to generate the test set satisfying the Prime
Path Coverage (denoted as P). Then, from P , the test cases
that cover the maximal number of priority edges that must
be present in the test cases are utilized to build test set T

34

6

Algorithm 2: Set-Covering Based Solution with Test Set Reduction
Input: G, G, PL ∈ {high,medium}
Output: test set T

1 P ← test cases satisfying the Prime Path Coverage in G generated by the SC algorithm
2 COV ER← Eh for PL = high
3 COV ER← Eh ∪ Em for PL = medium
4 T ← ∅
5 while COV ER 6= ∅ do
6 select p ∈ P such that p ∩ COV ER is maximal
7 ADD ← p ∩ COV ER
8 T ← T + {p}
9 COV ER← COV ER \ADD

10 end
// verification of T completeness

11 if PL = high then
12 V ← Eh

13 end
14 else if PL = medium then
15 V ← Eh ∪ Em

16 end
17 foreach e ∈ V do
18 if e /∈ any t ∈ T then
19 T is invalid
20 end
21 end

incrementally.

IV. EXPERIMENTS

In this section, we describe some experiments performed to
demonstrate the functionality of the proposed test set selection
strategy. The provided data can also be used to compare the
test sets produced by the individual algorithms and when using
various optimality criteria.

A. Experimental Method and Set-up

In the experiments, we execute the algorithms for the
following configurations of the test coverage criteria:

1) Edge Coverage: reduced by PL = high and PL =
medium. In this experiment, we compared PPT, RSC,
BF, SC and PG. For BF, SC and PG, the priorities in
G were converted to R by both Atomic and Sequence
conversion (see Table III).

2) Edge-Pair Coverage: reduced by PL = high and
PL = medium. In this experiment, we compared PPT
and RSC.

The Prime Path Coverage criterion was not involved in the
experiments, as its reduction by PL is possible only by the
RSC algorithm. Hence, no alternative algorithm was available
for comparison. The same situation is applicable for TDL >
2, where the PPT algorithm is the only option, which reduces
the test cases by PL.

Regarding the problem instances, we used 50 SUT models
specified by G. To ensure the objective comparability of all
algorithms (and the convertibility of G to G and R), the

graphs did not contain parallel edges (the SUTs were modeled
so that parallel edges were not needed). The models were
created in the user interface of the Oxygen platform [13].
The properties of these models are summarized in Table V.
| El |=| E | − | Eh | − | Em |. For the atomic
conversion of test requirements (see Table III), Rha (resp.
Rma) denotes a set of test requirements for PTL = high
(resp. PTL = medium). For the sequence conversion of
test requirements, Rhs (resp. Rms) denotes a set of test
requirements for PTL = high (resp. PTL = medium).
In Table V, we present only| Rhs | and | Rms |, because
| Rha |=| Eh | and | Rhm |=| Eh | + | Em |. The number of
loops in G is denoted by loops.

We compared all the options of test set optimality criteria
introduced in Section III-B3: a set of single optimality criteria,
an optimality function and sequence selection.

The test set selection process described in this paper is
implemented as part of the development branch of the Oxygen
platform. All the test set optimality criteria discussed in this
paper are calculated automatically from the produced test cases
and provided in a CSV-formatted report. In the report, the
test set T selected by the particular optimality criteria is also
presented, including the algorithm that generated this test set.

B. Experimental Results

In this section, we present a performance comparison of
the PPT, RSC, BF, SC, and PG algorithms using all the
test set optimality criteria discussed in Section II-B. For the
comparison that appears in Section IV-B1 we used the data
from Step 3 of Algorithm 1. Then, in Section IV-B2, we

35

7

TABLE V
PROBLEM INSTANCES USED IN THE EXPERIMENTS

ID | N | | E | | Eh | | Em | loops | Rhs | | Rms | ID | N | | E | | Eh | | Em | loops | Rhs | | Rms |
1 22 30 8 8 1 6 7 26 51 67 15 7 0 9 12
2 21 30 8 3 4 5 6 27 28 39 8 4 1 5 8
3 41 54 10 10 4 9 11 28 21 22 5 2 0 2 3
4 29 46 11 4 11 9 9 29 29 37 10 6 0 4 7
5 29 45 17 6 6 15 19 30 9 11 1 4 0 1 2
6 21 27 9 6 0 8 13 31 10 13 1 4 0 1 2
7 45 64 18 14 7 15 30 32 25 27 3 5 0 3 5
8 19 30 10 6 6 9 16 33 11 15 1 2 0 1 3
9 25 38 11 9 9 8 13 34 13 19 3 4 0 2 6

10 52 78 9 7 3 6 10 35 10 15 4 2 4 4 4
11 48 69 10 8 3 4 8 36 8 10 1 3 3 1 4
12 47 68 9 11 1 5 8 37 8 11 3 2 3 3 3
13 23 26 9 6 2 5 5 38 7 12 2 3 5 2 3
14 8 10 1 3 2 1 4 39 8 11 3 2 2 2 4
15 24 31 10 4 0 2 3 40 7 9 2 2 0 2 3
16 26 37 10 3 2 3 4 41 9 11 2 3 0 2 4
17 27 36 6 7 3 6 10 42 11 14 2 2 2 2 4
18 20 26 1 8 2 1 2 43 22 27 5 7 0 4 9
19 28 34 1 2 0 1 3 44 26 38 6 3 3 6 7
20 9 8 3 2 0 3 4 45 29 45 8 4 4 7 11
21 8 10 2 2 2 2 3 46 35 48 5 9 4 5 11
22 34 47 13 5 0 7 9 47 40 54 8 6 0 8 11
23 35 49 8 3 0 7 10 48 50 74 13 6 6 13 17
24 37 55 16 5 2 9 13 49 21 27 12 6 0 2 3
25 41 59 15 6 0 10 13 50 22 23 8 2 0 2 3

provide the results of each specific algorithm selection, which
are the output of Algorithm 1.

1) Comparison of Individual Algorithms: In Table VI, we
present the averaged values of the optimality criteria of the
test sets produced for the individual SUT models used in
the experiments (introduced previously in Table V). Table VI
presents the numbers for Edge Coverage and PL = high. The
atomic and sequence conversions of test requirements R (see
Table III) are denoted by “atom” and “seq” in the table.

Figures 2 and 3 provide a visual comparison, using these
averaged values to compare the individual algorithms.

Table VII lists the averaged values of the optimality criteria
of the test sets produced for the individual SUT models for
the Edge Coverage and PL = medium criterion and PL =
medium.

To better compare the algorithms using the values presented
in VII, Figures 4 and 5 shows a graphical summary.

Table VIII shows a comparison of the PPT and RSC
algorithms for the Edge-Pair Coverage criterion and PL ∈
{high,medium}. Here, the only relevant algorithms are PPT
and RSC, because these algorithms allow test set reduction by
PL and can satisfy the Edge-Pair Coverage criterion before
the test set reduction by PL.

A comparison of the individual algorithms for the Edge-
Pair Coverage criterion is depicted in Figures 6 and 7 for
PL = high.

Figures 8 and 9 depict this comparison for PL = medium.
We analyze the data in Section V.
2) Algorithm Selection Results: In this section, we present

the results related to the functionality of the proposed test set
selection strategy. We start with detailed data that demonstrate
the test set selection strategy. Table IX summarizes the exe-
cution of the test set selection strategy for the Edge Coverage
criterion and PL = high. For each of the problem instances
and optimality criteria, we list the algorithm that produced the

optimal T based on the selected criteria. Table IX presents
the results of the first twelve selected problem instances as an
example.

OPT denotes an optimality function (refer to Section
III-B3). In all the experiments described in this paper, the op-
timality function was configured with parameters w|T | = 0.3,
wedges(T) = 0.4 and wuedges(T) = 0.3.

SEQ denotes sequence selection (refer to Section III-B3).
In all of the experiments, the following sequence of optimality
criteria was adopted: | T |, edges(T), uedges(T). The
selection sequence starts with | T |.

In Table IX we present the name of the algorithm (or
algorithms) that produced the optimal test set based on the par-
ticular criterion. For simple optimality criteria, the algorithm
name is followed by the value of the optimality criterion (in
brackets). When multiple algorithms can provide an optimal T
for a particular criterion, more algorithms are listed. Cases in
which more than three algorithms provided an optimal T for
a particular criterion are denoted as n(M), where n denotes
the number of algorithms and M denotes the value of the
optimality criterion.

Atomic and sequence conversions of test requirements R
(refer to Table III) are denoted by “a” and “s” postfixes,
respectively, in italics following the name of the algorithm.
ID denotes the ID of the problem instance G.

Figure 10 shows the overall statistics for the test set se-
lection strategies for the Edge Coverage criterion and PL =
high. The x-axis reflects the optimality criteria, and the y-axis
presents the individual algorithms. The bubble size represents
the number of problem instances for which an algorithm pro-
duced an optimal T using a specific criterion. The maximum
bubble size is 50 (the number of problem instances). For the
case of uedgesh(T), all the algorithms achieved the maximum
value, as uedgesh(T) =| Eh | for T in all the cases.

Using the same schema, Figure 11 shows the overall sta-

36

8

TABLE VI
RESULTS OF THE ALGORITHMS FOR Edge Coverage AND PL = high

Algorithm / R creation method
Value of optimality criterion

- average for all G
PPT RSC BF atom BF seq SC atom SC seq PG atom PG seq

| T | 2.88 3.20 5.04 4.40 5.10 4.36 4.20 4.26
edges(T) 23.40 32.62 36.10 32.68 36.92 32.74 31.30 32.12
edgesh(T) 8.92 11.22 12.24 11.34 13.12 11.64 11.04 11.46
edgesm(T) 11.64 15.50 16.64 15.30 17.42 15.60 14.74 15.34
uedges(T) 17.08 18.90 19.64 18.76 18.86 18.02 17.96 17.96
uedgesh(T) 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12
uedgesm(T) 8.86 9.28 9.30 9.20 9.22 9.18 9.14 9.16
nodes(T) 20.52 29.42 31.06 28.28 31.82 28.38 27.10 27.86
unodes(T) 15.52 17.28 17.88 17.06 17.18 16.40 16.32 16.36

er(T) 0.50 0.57 0.56 0.54 0.54 0.52 0.52 0.52
eh(T) 0.41 0.38 0.36 0.39 0.38 0.40 0.40 0.40
em(T) 0.53 0.52 0.49 0.51 0.49 0.52 0.52 0.52
ueh(T) 0.36 0.28 0.25 0.29 0.25 0.30 0.30 0.30
uem(T) 0.45 0.38 0.33 0.38 0.33 0.38 0.39 0.39

0

5

10

15

20

25

30

35

40

TDL=1 PL=high

PPT

RSC

BF atom

BF seq

SC atom

SC seq

PG atom

PG seq

|T
|

ed
ge

s h
(T

)

ed
ge

s(
T)

ed
ge

s m
(T

)

ue
dg

es
h(

T)

ue
dg

es
(T

)

ue
dg

es
m

(T
)

no
de

s(
T)

un
od

es
(T

)

Fig. 2. Algorithm comparison for Edge Coverage and PL = high

|T| edges(T) edges_h(T) edges_m(T) uedges(T) uedges_h(T) uedges_m(T) nodes(T) unodes(T) er(T)

2 4 6 8 10 12 14 16 18 20
2 4 6 8 10 12 14 16 18 20
2 4 6 8 10 12 14 16 18 20
2 4 6 8 10 12 14 16 18 20
2 4 6 8 10 12 14 16 18 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PPT

RSC

BF atom

BF seq

SC atom

SC seq

PG atom

PG seq

er
(T

)

e h
(T

)

e m
(T

)

ue
h(

T)

ue
m

(T
)

Fig. 3. Algorithm comparison for Edge Coverage and PL = high

tistical results of the test set selection strategies for the Edge
Coverage criterion and PL = medium. In this case, all the
employed algorithms provided a T having uedgesh(T) =|
Eh | and uedgesm(T) =| Eh | + | Em |.

The same system is used in Figure 12, which depicts
the overall statistics of the test set selection strategies for
Edge-Pair Coverage and PL = high, and in Figure 13,
which presents the statistics for Edge-Pair Coverage and
PL = medium.

V. DISCUSSION

From the data presented in Section IV-B, several conclu-
sions can be made.

Starting with a comparison of the algorithms using the
average values of optimality criteria computed for 50 different
problem instances (Table V), the results differ significantly
based on the test coverage level. For Edge Coverage, the
PPT algorithm provides the best results in terms of average
statistics. The difference between the average value for PPT
and the other algorithms is the most significant for the opti-
mality criteria| T |, edges(T) and nodes(T). This result can
be observed for both PL = high (Table VI, Figure 2) and
PL = medium (Table VII, Figure 4). For PL = high, the
difference in | T | between PPT and RSC is 10%, and it is
greater than 31% between PPT and each of the BF, SC and
PG algorithms. The difference in edges(T) between PPT and
all the other algorithms is greater than 25%. For nodes(T),
this difference is greater than 24%. For PL = medium,
the differences are slightly lower in general. For | T |, the
difference between PPT and RSC is 8%, and it is greater than
27% between PPT and each of the BF, SC and PG algorithms.
The difference between PPT and all the other algorithms is
greater than 21% for edges(T) and greater than 20% for
nodes(T).

Additionally, for the optimality criteria based on unique
priority edges, ueh(T) and uem(T), the average value of

37

9

TABLE VII
RESULTS OF THE ALGORITHMS FOR Edge Coverage AND PL = medium

Algorithm / R creation method
Value of optimality criterion

- average for all G
PPT RSC BF atom BF seq SC atom SC seq PG atom PG seq

| T | 4.38 4.76 7.66 6.80 7.60 6.52 5.96 6.20
edges(T) 35.34 46.04 54.18 50.46 54.20 48.94 44.84 47.28
edgesh(T) 10.56 13.26 15.40 15.06 16.32 15.30 13.48 14.86
edgesm(T) 17.22 21.54 24.44 24.24 25.38 24.28 21.38 23.48
uedges(T) 22.60 24.06 24.72 23.60 23.98 22.76 22.80 22.68
uedgesh(T) 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12
uedgesm(T) 12.08 12.08 12.08 12.08 12.08 12.08 12.08 12.08
nodes(T) 30.96 41.28 46.52 43.66 46.60 42.42 38.88 41.08
unodes(T) 20.80 22.28 22.84 21.80 22.16 21.04 21.06 20.96

er(T) 0.69 0.74 0.75 0.72 0.74 0.70 0.70 0.69
eh(T) 0.30 0.29 0.28 0.31 0.29 0.32 0.31 0.32
em(T) 0.53 0.51 0.47 0.53 0.48 0.54 0.52 0.54
ueh(T) 0.22 0.18 0.14 0.16 0.14 0.17 0.18 0.17
uem(T) 0.42 0.33 0.26 0.31 0.25 0.33 0.34 0.33

0
5

10
15
20
25
30
35
40
45
50
55
60

TDL=1 PL=medium

PPT

RSC

BF atom

BF seq

SC atom

SC seq

PG atom

PG seq

|T
|

ed
ge

s h
(T

)

ed
ge

s(
T)

ed
ge

s m
(T

)

ue
dg

es
h(T

)

ue
dg

es
(T

)

ue
dg

es
m

(T
)

no
de

s(
T)

un
od

es
(T

)

Fig. 4. Algorithm comparison for Edge Coverage and PL = medium

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
PPT

RSC

BF atom

BF seq

SC atom

SC seq

PG atom

PG seq

er
(T

)

e h
(T

)

e m
(T

)

ue
h(T

)

ue
m

(T
)

Fig. 5. Algorithm comparison for Edge Coverage and PL = medium

optimality criteria differs significantly for the PPT algorithm.
Higher values of ueh(T) and uem(T) result in test sets closer
to optimum. For PL = high, PPT is higher than all the other
algorithms by 18% for ueh(T) and 15% for uem(T).

For the rest of the optimality criteria, the differences are not
as significant; however, similar results are still present in the
data.

Generally, the RSC algorithm yields results relatively sim-
ilar to the BF, PG and SC algorithms; however, exceptions
can be found. For PL = high (Table VI, Figure 2), the RSC
algorithm is outperformed by the PG and SC algorithms for

TABLE VIII
RESULTS OF THE ALGORITHMS FOR EDGE-PAIR COVERAGE

PL = high PL = medium
Value of optimality
criterion - average

for all G

PPT RSC PPT RSC

| T | 5.28 3.20 7.78 4.76
edges(T) 43.74 32.62 62.88 46.04
edgesh(T) 15.50 11.22 18.32 13.26
edgesm(T) 20.72 15.50 29.18 21.54
uedges(T) 23.04 18.90 28.00 24.06
uedgesh(T) 7.12 7.12 7.12 7.12
uedgesm(T) 9.92 9.28 12.08 12.08
nodes(T) 38.46 29.42 55.10 41.28
unodes(T) 21.46 17.28 26.30 22.28

er(T) 0.65 0.57 0.86 0.74
eh(T) 0.36 0.38 0.27 0.29
em(T) 0.49 0.52 0.47 0.51
ueh(T) 0.20 0.28 0.12 0.18
uem(T) 0.29 0.38 0.21 0.33

uedges(T), nodes(T), unodes(T), and er(T). At this priority
level, the RSC algorithm does not outperform any of other
algorithms.

The situation changes when PL = medium (Table VII,
Figure 4), which, in practical terms, means that the algorithms
process more priority edges. From the data, RSC exhibits
better performance in this case. It is outperformed by the PG
and SC algorithms only for the uedges(T) and unodes(T)
optimality criteria. In contrast, the RSC outperforms BF, PG

38

10

TA
B

L
E

IX
R

E
S

U
LT

S
O

F
T

H
E

T
E

S
T

S
E

T
S

E
L

E
C

T
IO

N
S

T
R

A
T

E
G

Y
F

O
R

T
H

E
IN

D
IV

ID
U

A
L

P
R

O
B

L
E

M
IN

S
TA

N
C

E
S

F
O

R
E

dg
e

C
ov

er
ag

e
A

N
D
P
L

=
h
ig
h

O
pt

im
al

ity
cr

ite
ri

on
ID

|T
|

e
d
g
e
s
(T

)
e
d
g
e
s
h
(T

)
u
e
d
g
e
s
(T

)
n
o
d
e
s
(T

)
u
n
o
d
e
s
(T

)
e
r
(T

)
e
h
(T

)
e
m
(T

)
O

PT
SE

Q
1

R
SC

(4
)

PP
T

(4
)

PP
T

(1
8)

R
SC

(8
)

PP
T

(8
)

PP
T

(1
7)

PP
T

(1
4)

PP
T

(1
4)

PP
T

(0
.5

7)
4(

0.
46

)
R

SC
(0

.9
0)

PP
T

PP
T

2
R

SC
(3

)
PP

T
(3

)
PP

T
(2

2)
PG

(8
)

PP
T

(8
)

PP
T

(2
2)

PP
T

(1
9)

PP
T

(1
9)

PP
T

(0
.7

3)
PP

T
(0

.3
6)

PP
T

(0
.5

0)
PP

T
PP

T

3
R

SC
(6

)
PP

T
(6

)
SC

a(
67

)
SC

a(
13

)
4(

35
)

SC
a(

60
)

4(
34

)
4(

0.
65

)
R

SC
(0

.2
2)

PG
a(

0.
41

)
SC

a
PP

T

4
PP

T
(2

)
PP

T
(3

1)
PP

T
(1

3)
PP

T
(2

6)
PP

T
(2

9)
PP

T
(2

5)
PP

T
(0

.5
6)

PP
T

(0
.4

2)
PP

T
(0

.5
5)

PP
T

PP
T

5
PP

T
(6

)
PP

T
(3

5)
PP

T
(1

9)
PG

a(
30

)
PP

T
(3

0)
PP

T
(2

9)
PG

a(
26

)
PP

T
(2

6)
PG

a(
0.

67
)

PP
T

(0
.6

7)
PP

T
(0

.5
4)

PP
T

(0
.6

6)
PP

T
PP

T

6
R

SC
(4

)
PP

T
(4

)
R

SC
(2

8)
PP

T
(2

8)
R

SC
(1

2)
PP

T
(1

2)
4(

19
)

R
SC

(2
4)

PP
T

(2
4)

4(
17

)
4(

0.
70

)
R

SC
(0

.4
3)

PP
T

(0
.4

3)
B

Fa
(0

.4
1)

R
SC

R
SC PP

T
7

R
SC

(1
1)

PP
T

(1
1)

PP
T

(9
9)

PP
T

(2
6)

PP
T

(4
5)

PP
T

(8
8)

PG
a(

42
)

PG
s(

42
)

SC
s(

42
)

PP
T

(0
.7

0)
PP

T
(0

.2
6)

PP
T

(0
.6

0)
PP

T
PP

T

8
PP

T
(3

)
PP

T
(3

7)
PP

T
(1

4)
PP

T
(2

1)
PP

T
(3

4)
PP

T
(2

0)
PP

T
(0

.7
0)

B
Fs

(0
.4

3)
R

SC
(0

.5
6)

PP
T

PP
T

9
PP

T
(2

)
PP

T
(3

1)
PP

T
(1

5)
PP

T
(2

2)
PP

T
(2

9)
PP

T
(2

1)
PP

T
(0

.5
8)

PP
T

(0
.4

8)
PP

T
(0

.6
5)

PP
T

PP
T

10
R

SC
(3

)
PP

T
(3

)
R

SC
(2

6)
PP

T
(2

6)
R

SC
(1

0)
PP

T
(1

0)
R

SC
(2

5)
PP

T
(2

5)
R

SC
(2

3)
PP

T
(2

3)
R

SC
(2

2)
PP

T
(2

2)
R

SC
(0

.3
2)

PP
T

(0
.3

2)
PG

s(
0.

44
)

SC
s(

0.
44

)
PG

s(
0.

51
)

SC
s(

0.
51

)
R

SC PP
T

R
SC PP

T
11

R
SC

(3
)

PP
T

(3
)

R
SC

(2
2)

PP
T

(2
2)

PP
T

(1
2)

R
SC

(1
9)

R
SC

(1
9)

PP
T

(1
9)

R
SC

(1
6)

R
SC

(0
.2

8)
R

SC
(0

.5
9)

R
SC

(0
.5

9)
PP

T
(0

.5
9)

R
SC

R
SC

12
R

SC
(3

)
PP

T
(3

)
R

SC
(2

7)
R

SC
(1

2)
PP

T
(1

2)
4(

22
)

R
SC

(2
4)

4(
20

)
4(

0.
32

)
R

SC
(0

.4
4)

PG
a(

0.
63

)
PG

s(
0.

63
)

SC
s(

0.
63

)

R
SC

R
SC

39

11

0
5

10
15
20
25
30
35
40
45
50

TDL=2 PL=high

PPT

RSC

|T
|

ed
ge

s h
(T

)

ed
ge

s(
T)

ed
ge

s m
(T

)

ue
dg

es
h(T

)

ue
dg

es
(T

)

ue
dg

es
m

(T
)

no
de

s(
T)

un
od

es
(T

)

Fig. 6. Algorithm comparison for Edge-Pair Coverage and PL = high

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TDL=2 PL=high

PPT

RSC

er
(T

)

e h
(T

)

e m
(T

)

ue
h(T

)

ue
m

(T
)

Fig. 7. Algorithm comparison for Edge-Pair Coverage and PL = high

and SC for edges(T) and edgesh(T), which can be considered
as important criteria of test set optimality.

For the total test cases | T |, the RSC yields the better
results than do the BF, PG and SC for both PL = high and
PL = medium. However, | T | itself as an indicator of test
set optimality is probably insufficient; the total number of test
steps (e.g. edges(T) or nodes(T)) are more reliable metrics.

Some other conclusions can be drawn from the data for the
Edge Coverage criterion. For PL = high, the differences in
the results for the atomic and sequence conversion of the test
requirements R (refer to Table III) are more significant for
the BF and SC algorithms; however, the differences are not
so significant for PG for majority of the test set optimality
criteria. A similar trend can be found for PL = medium
although for the test set optimality criteria edgesh(T) and
edgesm(T), the differences caused by the atomic and sequence
conversions of the test requirements for the BF and SC
algorithms are lower, whereas this difference is higher for the
PG algorithm compared to PL = high.

Regarding the Edge-Pair Coverage criterion, the situation
changes: the RSC algorithm outperforms the PPT algorithm
on all the test set optimality criteria for PL = high (Table
VIII, Figure 6) and for PL = medium (Table VIII, Figure
8).

In some cases, the results are relatively similar, for instance
scores for uedgesm(T), eh(T) and em(T) when PL = high
and eh(T) and em(T) when PL = medium. However,
significant differences can be observed for the rest of the test

set optimality criteria. For instance, when PL = high, the
difference in | T | is 39%, the difference in edges(T) is 25%
and the difference in nodes(T) is 24%. When PL = medium,
the difference in | T | is 39%, the difference in edges(T) is
27% and the difference in nodes(T) is 25%. These results
show that the RSC algorithm is a better candidate for Edge-
Pair Coverage criterion than is PPT.

Regarding uedgesh(T) when PL = high for both Edge
Coverage and Edge-Pair Coverage, all the employed algo-
rithms created the test sets that had the same value for the
uedgesh(T) criterion. This is a correct result and occurs
because of the principle behind the algorithms. The same
analogy applies for uedgesh(T) and uedgesm(T) when PL =
medium.

Regarding the test set selection strategy (the second part)
other facts can be observed from the data. The most important
finding is that for various problem instances G and different
optimality criteria, different algorithms provide the optimal
test set. This can be observed similarly for Edge Coverage
with PL = high (see Figure 10 and Table IX) and for Edge
Coverage with PL = medium (see Figure 11), Edge-Pair
Coverage with PL = high (see Figure 12) and Edge-Pair
Coverage with PL = medium (see Figure 13). This effect is
well documented by a sample of the detailed data provided in
Table IX.

For certain test set optimality criteria, the algorithms that
provide the optimal solution for all or for the majority of
the problem instances can be identified. For instance, this is
true in the case of the Edge Coverage criterion (PL = high
and PL = medium), using the PPT algorithm and the test
set optimality criteria | T | and edges(T). However, for
different optimality criteria (e.g., eh(T) and em(T)), a single
algorithm that clearly outperforms the other algorithms cannot
be identified. For PL = medium, this effect is even more
obvious and relates to the fact that when PL = medium
the algorithms reflect more priority edges. Moreover, when
PL = medium, the data shows that no single algorithm
clearly outperforms the others for the other test set optimal-
ity criteria, namely, uedges(T), unodes(T) and er(T). For
uedges(T), for instance, PPT provided the optimal test set for
31 problem instances, RSC for 16 instances, BF with atomic
conversion of test requirements for 11 instances, BF with

40

12

0

10

20

30

40

50

60

70

TDL=2 PL=medium

PPT
RSC

|T
|

ed
ge

s h
(T

)

ed
ge

s(
T)

ed
ge

s m
(T

)

ue
dg

es
h(T

)

ue
dg

es
(T

)

ue
dg

es
m

(T
)

no
de

s(
T)

un
od

es
(T

)

Fig. 8. Algorithm comparison for Edge-Pair Coverage and PL = medium

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TDL=2 PL=medium

PPT

RSC

er
(T

)

e h
(T

)

e m
(T

)

ue
h(T

)

ue
m

(T
)

Fig. 9. Algorithm comparison for Edge-Pair Coverage and PL = medium

sequence conversion of test requirements for 22 instances, SC
with atomic conversion of test requirements for 14 instances,
SC with sequence conversion of test requirements for 30
instances, PG with atomic conversion of test requirements
for 27 instances and PG with sequence conversion of test
requirements for 33 instances. On a given problem instance,
applying more algorithms can provide an optimal result.

Generally, the results of the Edge Coverage criteria (Figures
10 and 11) correlate with the findings presented when the al-
gorithms were compared by their average values of optimality
criteria (Figures 2 and 4).

For Edge-Pair Coverage, the analysis is simpler, because
only two algorithms, PPT and RSC are comparable for this
test coverage level. When PL = high,the RSC outperforms
PPT on most of the test set optimality criteria; however, no
clear ”winner” can be identified for criteria eh(T) and em(T).
When considering eh(T), PPT provided the optimal test set for
25 problem instances, RSC provided the optimal test set for 33
problem instances, and both algorithms provided the optimal
test set for 8 problem instances. Considering em(T) , PPT
provided the optimal test set for 27 problem instances, RSC
provided the optimal test set for 33 problem instances, and
both algorithms provided the optimal test set for 10 problem
instances.

For the optimality criteria uedges(T), nodes(T),
unodes(T) and er(T), when PL = high, RSC outperformed
PPT in 39 out of 50 problem instances , while both algorithms
provided the same result for 6 problem instances.

For PL = medium, the RSC outperformed PPT in most
of the test set optimality criteria. For this priority level, RSC
yields the better results. This also applies to the eh(T) and
em(T) previously discussed for PL = high. Considering
eh(T) when PL = medium, PPT provided the optimal test
set for 18 problem instances, RSC provided the optimal test
set for 36 problem instances, and both algorithms provided the
optimal test set for 4 problem instances. Considering em(T)
, PPT provided the optimal test set for 19 problem instances,
RSC provided the optimal test set for 36 problem instances,
and both algorithms provided the optimal test set for 4 problem
instances.

Generally, the results justify the concept proposed in this
paper: in situations in which different algorithms provide
optimal results for different problem instances (when con-
sidering a particular test set optimality criterion), employing
more algorithms and then selecting the best set is a practical
approach.

VI. THREATS TO VALIDITY

Several issues can be raised regarding the validity of the
results; we discuss them in this section and describe the
countermeasures that mitigate the effects of these issues.

The first concern that can be raised involves the generation
of the set of test requirements R from G for the BF, SC and PG
algorithms for the Edge Coverage criterion (TDL = 1), where
PL is used for the test set reduction. The SUT models G and G
with R differ between the methods, how to capture the priority
parts of the SUT process, hence the different possibilities for
conversion between the edge priorities in G and the set of test
requirements R can be discussed. To mitigate this issue, we
employed and analyzed two different strategies for generating
the set of test requirements R from G, namely, the atomic and
sequence conversion methods, which are specified in Section
III.

Another issue relates to the topology of the SUT models.
The BF, SC and PG algorithms use a directed graph as the
SUT model [3]; consequently, a directed graph is also used
for RSC, because RSC employs SC as its main part (refer
to Algorithm 2). For PPT, a directed multigraph can be used
as input. To mitigate this issue and to ensure the objective

41

13

|T| edges(T) edges_h(T) edges_m(T) uedges(T) uedges_h(T) uedges_m(T) nodes(T)
unodes(T) er(T) e_h(T) e_m(T) ue_h(T) ue_m(T) SELECTION… SEQUENCE…

|T
|

ed
ge

s h
(T

)

ed
ge

s(
T)

ed
ge

s m
(T

)

ue
dg

es
h(

T)

ue
dg

es
(T

)

ue
dg

es
m

(T
)

no
de

s(
T)

un
od

es
(T

)

er
(T

)

e h
(T

)

e m
(T

)

ue
h(

T)

ue
m

(T
)

se
le

ct
io

n
fu

nc
tio

n

se
qu

en
ce

se
le

ct
io

n

PPT

RSC

BF atom

BF seq

SC seq

PG seq

SC atom

PG atom

Fig. 10. Overall statistics of the test set selection strategy for Edge Coverage and PL = high

|T| edges(T) edges_h(T) edges_m(T) uedges(T) uedges_h(T) uedges_m(T) nodes(T)
unodes(T) er(T) e_h(T) e_m(T) ue_h(T) ue_m(T) SELECTION… SEQUENCE…

|T
|

ed
ge

s h
(T

)

ed
ge

s(
T)

ed
ge

s m
(T

)

ue
dg

es
h(T

)

ue
dg

es
(T

)

ue
dg

es
m

(T
)

no
de

s(
T)

un
od

es
(T

)

er
(T

)

e h
(T

)

e m
(T

)

ue
h(T

)

ue
m

(T
)

se
le

ct
io

n
fu

nc
tio

n

se
qu

en
ce

se
le

ct
io

n

PPT

RSC

BF atom

BF seq

SC seq

PG seq

SC atom

PG atom

Fig. 11. Overall statistics of the test set selection strategy for Edge Coverage and PL = medium

|T| edges(T) edges_h(T) edges_m(T) uedges(T) uedges_h(T) uedges_m(T) nodes(T)
unodes(T) er(T) e_h(T) e_m(T) ue_h(T) ue_m(T) SELECTION… SEQUENCE…

|T
|

ed
ge
s h
(T
)

ed
ge
s(
T)

ed
ge
s m
(T
)

ue
dg
es

h(T
)

ue
dg
es
(T
)

ue
dg
es

m
(T
)

no
de

s(
T)

un
od

es
(T
)

er
(T
)

e h
(T
)

e m
(T
)

ue
h(T

)

ue
m
(T
)

se
le
ct
io
n

fu
nc
tio

n

se
qu

en
ce

se
le
ct
io
n

PPT

RSC

Fig. 12. Overall statistics of the test set selection strategy for Edge-Pair Coverage and PL = high

|T| edges(T) edges_h(T) edges_m(T) uedges(T) uedges_h(T) uedges_m(T) nodes(T)
unodes(T) er(T) e_h(T) e_m(T) ue_h(T) ue_m(T) SELECTION… SEQUENCE…

|T
|

ed
ge
s h
(T
)

ed
ge
s(
T)

ed
ge
s m
(T
)

ue
dg
es

h(T
)

ue
dg
es
(T
)

ue
dg
es

m
(T
)

no
de

s(
T)

un
od

es
(T
)

er
(T
)

e h
(T
)

e m
(T
)

ue
h(T

)

ue
m
(T
)

se
le
ct
io
n

fu
nc
tio

n

se
qu

en
ce

se
le
ct
io
n

PPT

RSC

Fig. 13. Overall statistics of the test set selection strategy for Edge-Pair Coverage and PL = medium

42

14

comparability of all the algorithms and the convertibility of G
to G and R, we used only directed graphs in the experiments.

A related issue arises at this point: Does this restriction
not limit the modeling possibilities when capturing the SUT
structure? The answer is that practically speaking, the model-
ing possibilities are not limited. Using a directed graph leads
only to more extensive models. When parallel edges present in
the conceptual SUT model (e.g., UML Activity Diagram) are
not allowed in its abstraction as captured by a directed graph,
we instead use graph nodes to capture the parallel edges. This
approach leads to more extensive graphs; however, it does not
limit the algorithms and the overall solution.

Another question can be raised regarding the practical
applicability of all the test set optimality criteria presented in
Table I; many arguments can be brought both for and against
this issue. In this study, rather than tackling such discussions,
we present the data for all the optimality criteria and let the
readers decide.

The last issue to be raised regards the strength of the test
cases, which are reduced by the PL concept to cover the
priority parts of the SUT processes only. In these defined
priority parts, the test coverage and the strength of the test
cases are guaranteed. However, it is not guaranteed for the non-
priority parts due to the principle of the PL criteria. However,
this fact does not invalidate the algorithms, the experimental
data, or the conclusions drawn from these data.

VII. RELATED WORK

In the majority of the current path-based techniques, a SUT
abstraction is based on a directed graph [1]. To capture the
priority of specific parts of the SUT process or determine
the test coverage level, test requirements are used [1], [7].
To assess the optimality of a path-based test set, a number
of criteria can be discussed [3], [1], [8]. These criteria are
usually based on the number of nodes, the number of edges,
the number of paths or the coverage of the test requirements.

To generate path-based test cases, a number of algorithms
have been proposed [2], [3], [4], [5], [6], [7], [15], such as the
Brute Force algorithm, the Set-Covering Based Solution, or
the Matching-Based Prefix Graph Solution [3]. Additionally,
genetic algorithms have been employed to generate the prime
paths [6] or to generate basis test paths [16]. Other nature-
inspired algorithms have also been proposed, for example, ant
colony optimization algorithms [5], [17], the firefly algorithm
[18] and algorithms inspired by microbiology [4].

Test set optimization based on prioritization is considered
essential area to be explored and here; various alternative
approaches can be identified. As an example, clustering based
on a neural network was examined in [19], fuzzy clustering
possibilities were explored in [20], and the Firefly optimization
algorithm was utilized in [21]. These approaches also use the
internal structure of a SUT as the input to the process.

The path-based testing technique itself is generally appli-
cable to and can be employed for various types of testing.
For instance, the composition of end-to-end business scenarios
[13], the composition of scenarios for integration tests or
path-based testing focusing on the code level of the SUT

[22], [8]. On this last level, path-based testing overlaps with
the data-flow technique, which focuses on verifying the data
consistency of the SUT code [23], [24], [25], [26]. In this area,
control-flow graphs are employed as the SUT abstraction [22].

Alternative approaches to the current test requirement con-
cept have been formulated [9], which result in capturing the
priorities by the weights of the graph edges. This approach
was inspired by the need for more priority levels, which are
commonly used in the software engineering and management
praxes [10], [11]. Another motivation for this approach regards
certain limitations of the test requirements concept: in a num-
ber of the algorithms, the test requirements can be practically
used either to specify the SUT priority parts or to determine
the test intensity. As an alternative, the PPT was formulated,
which is an algorithm that combines variable test coverage
with SUT part prioritization [9].

Regarding using a combination of algorithms to determine
the optimal test set, significantly less work exists. Some work
utilizing this idea exists in the area of combinatorial interaction
testing, in which different approaches are combined to obtain
the optimal test set [27], [28]. Considering the experimental
results presented in this paper, this stream can be considered
prospectively for the path-based testing domain.

VIII. CONCLUSION

In the paper, we proposed a strategy that employs a set of
currently available algorithms and one new algorithm to find
an optimal set of path-based test cases for a SUT model based
on a directed graph with priority parts. The priority is captured
as edge weights; for some of the algorithms, it is converted to
test requirements. The optimality of the test set is determined
by an optimality criterion selected by the user from fourteen
indicators of test set optimality, by an optimality function that
can be parameterized, or by the sequence selection method
specified in this paper. The experimental results from running
this strategy on 50 various problem instances justify the
proposed approach. For the various problem instances and
different optimality criteria, different algorithms provide the
optimal test set—an outcome that was observed for all four
combinations of test coverage and priority level criteria used
in the experiments.

From the exercised algorithms, the PPT provided the best
results for the Edge Coverage criterion. However, for certain
sets of problem instances and certain test set optimality
criteria, the PPT is outperformed by other algorithms (i.e.,
RSC, SC, and PG) and by BF in certain instances. For
the Edge-Pair Coverage criterion, where the PPT and the
RSC were the only comparable candidates for solving the
problem (combining Edge-Pair Coverage with prioritization of
particular SUT model parts), the RSC outperformed the PPT
on the majority of the optimality criteria. However, for specific
optimality criteria (e.g., eh(T) and em(T)), the dominance of
the RSC algorithm was weak, and for a significant proportion
of the problem instances, the PPT provided better results.

The proposed test set selection strategy is not a substitute
for the development of new perspective algorithms to solve the
path-based test case generation problem. Using this strategy,

43

15

the quality of the overall result depends on the quality of the
algorithms employed. If new algorithms are developed that
provide better results for particular problem instances, this
strategy could provide better results in the future.

ACKNOWLEDGMENTS

This research is conducted as a part of the project TACR
TH02010296 Quality Assurance System for the Internet of
Things Technology.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[2] A. Dwarakanath and A. Jankiti, “Minimum number of test paths for
prime path and other structural coverage criteria,” in IFIP International
Conference on Testing Software and Systems. Springer, 2014, pp. 63–
79.

[3] N. Li, F. Li, and J. Offutt, “Better algorithms to minimize the cost of
test paths,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. IEEE, 2012, pp. 280–289.

[4] V. Arora, R. Bhatia, and M. Singh, “Synthesizing test scenarios in uml
activity diagram using a bio-inspired approach,” Computer Languages,
Systems & Structures, 2017.

[5] F. Sayyari and S. Emadi, “Automated generation of software testing path
based on ant colony,” in Technology, Communication and Knowledge
(ICTCK), 2015 International Congress on. IEEE, 2015, pp. 435–440.

[6] B. Hoseini and S. Jalili, “Automatic test path generation from sequence
diagram using genetic algorithm,” in Telecommunications (IST), 2014
7th International Symposium on. IEEE, 2014, pp. 106–111.

[7] M. Shirole and R. Kumar, “Uml behavioral model based test case
generation: a survey,” ACM SIGSOFT Software Engineering Notes,
vol. 38, no. 4, pp. 1–13, 2013.

[8] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison
of four unit test criteria: Mutation, edge-pair, all-uses and prime path
coverage,” in Software Testing, Verification and Validation Workshops,
2009. ICSTW’09. International Conference on. IEEE, 2009, pp. 220–
229.

[9] M. Bures, T. Cerny, and M. Klima, “Prioritized process test: More effi-
ciency in testing of business processes and workflows,” in International
Conference on Information Science and Applications. Springer, 2017,
pp. 585–593.

[10] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, “A system-
atic literature review of software requirements prioritization research,”
Information and software technology, vol. 56, no. 6, pp. 568–585, 2014.

[11] L. van der Aalst, E. Roodenrijs, J. Vink, and R. Baarda, TMap NEXT:
business driven test management. Uitgeverij kleine Uil, 2013.

[12] T. Koomen, B. Broekman, L. van der Aalst, and M. Vroon, TMap next:
for result-driven testing. Uitgeverij kleine Uil, 2013.

[13] M. Bures, “Pctgen: automated generation of test cases for application
workflows,” in New Contributions in Information Systems and Technolo-
gies. Springer, 2015, pp. 789–794.

[14] P. Ammann and J. Offutt. (2017) Graph coverage web appli-
cation, http://cs.gmu.edu:8080/offutt/coverage/graphcoverage. [Online].
Available: http://cs.gmu.edu:8080/offutt/coverage/GraphCoverage

[15] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, P. Mcminn et al., “An
orchestrated survey of methodologies for automated software test case
generation,” Journal of Systems and Software, vol. 86, no. 8, pp. 1978–
2001, 2013.

[16] A. S. Ghiduk, “Automatic generation of basis test paths using variable
length genetic algorithm,” Information Processing Letters, vol. 114,
no. 6, pp. 304–316, 2014.

[17] P. R. Srivastava, N. Jose, S. Barade, and D. Ghosh, “Optimized test
sequence generation from usage models using ant colony optimization,”
International Journal of Software Engineering & Applications, vol. 2,
no. 2, pp. 14–28, 2010.

[18] P. R. Srivatsava, B. Mallikarjun, and X.-S. Yang, “Optimal test sequence
generation using firefly algorithm,” Swarm and Evolutionary Computa-
tion, vol. 8, pp. 44–53, 2013.

[19] N. Gökçe, M. Eminov, and F. Belli, “Coverage-based, prioritized test-
ing using neural network clustering,” in International Symposium on
Computer and Information Sciences. Springer, 2006, pp. 1060–1071.

[20] F. Belli, M. Eminov, and N. Gökçe, “Coverage-oriented, prioritized
testing–a fuzzy clustering approach and case study,” in Latin-American
Symposium on Dependable Computing. Springer, 2007, pp. 95–110.

[21] V. Panthi and D. Mohapatra, “Generating prioritized test sequences using
firefly optimization technique,” in Computational Intelligence in Data
Mining-Volume 2. Springer, 2015, pp. 627–635.

[22] J. Yan and J. Zhang, “An efficient method to generate feasible paths for
basis path testing,” Information Processing Letters, vol. 107, no. 3-4,
pp. 87–92, 2008.

[23] M. L. Chaim and R. P. A. De Araujo, “An efficient bitwise algorithm
for intra-procedural data-flow testing coverage,” Information Processing
Letters, vol. 113, no. 8, pp. 293–300, 2013.

[24] G. Denaro, M. Pezzè, and M. Vivanti, “On the right objectives of data
flow testing,” in Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on. IEEE, 2014, pp. 71–
80.

[25] G. Denaro, A. Margara, M. Pezze, and M. Vivanti, “Dynamic data
flow testing of object oriented systems,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 947–958.

[26] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su, “A survey
on data-flow testing,” ACM Computing Surveys (CSUR), vol. 50, no. 1,
p. 5, 2017.

[27] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A tabu search hyper-
heuristic strategy for t-way test suite generation,” Applied Soft Comput-
ing, vol. 44, pp. 57–74, 2016.

[28] K. Z. Zamli, F. Din, G. Kendall, and B. S. Ahmed, “An experimental
study of hyper-heuristic selection and acceptance mechanism for com-
binatorial t-way test suite generation,” Information Sciences, vol. 399,
pp. 121–153, 2017.

44

8 Appendix B: Testing the consistency of business data ob-

jects using extended static testing of CRUD matrices

[A.2] Miroslav Bures, Tomas Cerny, Karel Frajtak, and Bestoun S. Ahmed. Testing the
consistency of business data objects using extended static testing of CRUD matrices.
Cluster Computing, online, pages 1-14. 2017. (Q2, IF 2.04)

45

Cluster Comput
DOI 10.1007/s10586-017-1118-7

Testing the consistency of business data objects using extended
static testing of CRUD matrices

Miroslav Bures1 · Tomas Cerny2 · Karel Frajtak1 · Bestoun S. Ahmed1,3

Received: 3 May 2017 / Revised: 23 July 2017 / Accepted: 10 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Static testing is used to detect software defects
in the earlier phases of the software development lifecy-
cle, which makes the total costs caused by defects lower
and the software development project less risky. Different
types of static testing have been introduced and are used
in software projects. In this paper, we focus on static test-
ing related to data consistency in a software system. In
particular, we propose extensions to contemporary static
testing techniques based on CRUD matrices, employing
cross-verifications between various types of CRUD matri-
ces made by different parties at various stages of the software
project. Based on performed experiments, the proposed static
testing technique significantly improves the consistency of
Data Cycle Test cases. Together with this trend, we observe
growing potential of test cases to detect data consistency
defects in the system under test, when utilizing the proposed
technique.

B Tomas Cerny
tomas_cerny@baylor.edu

Miroslav Bures
miroslav.bures@fel.cvut.cz

Karel Frajtak
frajtak@fel.cvut.cz

Bestoun S. Ahmed
albeybes@fel.cvut.cz

1 Department of Computer Science, FEE Czech Technical
University in Prague, Karlovo Namesti 13, 121 35 Prague,
Czech Republic

2 Department of Computer Science, ECS Baylor University,
One Bear Place #97141, Waco, TX 76798, USA

3 College of Engineering, Salahaddin University-Erbil,
Kurdistan, Iraq

Keywords Static testing · Data consistency testing · Data
Cycle Test · CRUD matrix

1 Introduction

Static testing is an efficientmethoddetecting software defects
in a phase, where the defect fixing is rather inexpensive
when compared to the later project phases. Various concepts
and methods exist in this area. In this paper, we focus on
static testing related to consistency of business data objects
in the Enterprise Information Systems (EIS). Usually, data-
flow based techniques apply to data consistency in EIS. On
the conceptual level, the Data Cycle Test (DCyT) [14,18] is
considered as a template for the data consistency tests. The
DCyT bases on a concept of CRUD matrix and proposes
fundamental methods of static testing using such CRUD
matrices. In this paper, we propose extensions to the static
testing methods.

The discussed static testingmethods contribute to twopos-
itive effects when applied on a software development project:

1. It can detect design errors or inconsistencies related to
handling of business data objects of the System Under
Test (SUT) (e.g. missing functions, wrong assignment of
SUT functions to the business data objects, suboptimal
design of particular business data objects)

2. Later, in the test design and test execution phases of the
project, proper static testing can lead to the design of
more consistent and effective DCyT dynamic test cases
(see Sect. 1.2). Since the test basis (design documenta-
tion, from which the test cases are derived) is rarely free
of design errors and rarely up-to-date in all phases of the
software project, defects in the test basis lead promote
into the DCyT test cases. For Example, the test case can-

123

46

Cluster Comput

not be executed in the SUT, is missing an important part
of functionality to test.

In this paper, we use the following concepts. A data entity
defines a data object consisting of data that are stored in the
database of the SUT. For test design purposes, data enti-
ties are commonly identified on the conceptual level of the
design phase. Typically, we are interested in capturing princi-
pal business data entities that correspond to a reality modeled
by the SUT. During the SUT run, several data objects are ini-
tiated as instances of a particular data entity.

A function is an SUT feature, performing any of Create,
Update, Read and Delete (C, R, U, D) operations on a data
entity. Further on, F = { f1, . . . , fn} is a set of all the SUT
functions, and E = {e1, . . . , ep} is a set of all the data entities
taken into account for the test design.

These notions allow us to define CRUD matrix as M =
(mi, j)n,p , n = |F |, p = |E |, m{i, j} = {o|o ∈ {C, R,U, D}
⇐⇒ function fi ∈ F performs the respective Create, Read,
Update or Delete operations on the data entity e j ∈ E}.

The DCyT aims to detect data consistency defects. We
consider a data entity being inconsistent as an SUT defect,
when the following scenario occurs:

A data object o is an instance of data entity e. A function
f1 changes the values of data object o attributes. Before being
processed by the function f1, the data object o with defined
attributes A = {a, . . . , an} has values of these attributes
V = {v1, . . . , vn}. According to the SUT specification, after
being processed by the function f1 , the data object should
have values of these attributes set to V ′ = {

v1
′, . . . , vn ′}.

Due to possible defects in function f1, the attribute values
can be set to V ′′ = {

v1
′′, . . . , vn ′′}. When V ′ �= V ′′, we

consider the data object o inconsistent. This state can cause
a defect in SUT later on, when the inconsistent data object
o is handled by another SUT function f2 (or a set of func-
tions). We generalize this situation that data entity e is made
inconsistent.

Even the create operation can make data entity inconsis-
tent. Consider the following situation:

According to the SUT specification, after being created
by the function f1, the data object o (being an instance of
data entity e) should have values of these attributes set to
V ′ = {

v1
′, . . . , vn ′} . Due to possible defects in function

f1, the attribute values can be set to V ′′ = {
v1

′′, . . . , vn ′′}.
WhenV ′ �= V ′′, the data object is created inconsistent, which
can cause a defective behavior, when being exercised by next
SUT functions.

This paper is organized as follows. In the rest of this sec-
tion, we discuss the motivation for DCyT and we summarize
this technique. In Sect. 2 we present proposed approach for
more extensive static testing using various types of CRUD
matrices. Section 3 presents method and results of the exper-
iments. Section 4 discusses results of the experiments and

analyzes trends documented by the presented data. In Sect.
5 we discuss possible threats to validity. Section 6 presents
the related work. In the last section, we conclude the paper.

1.1 Motivation for specialized data consistency tests

One may raise a question, whether are the data consistency
defects so frequent and difficult to detect by a workflow-
based testing techniques (for example [6,12,21]), that they
deserve a specialized test design technique? Let us give a
practical example of data consistency defect, which can be
detected by DCyT. Consider an eShop application as the
SUT, and its two separate modules: a Client module and an
Accounting module. In the Client module, customer creates
and further modifies anOrder (data entity e). TheOrder con-
sists of a set of attributes A and Order Items D, e = (A, D).
Order can be active or archived. This is represented by an
attribute a ∈ A, which can be set to values ‘active’ or
‘archive’.

The customer creates an Order (during this, value of a
is set as ‘active’). Then he adds Order Items to the Order
or remove them, fills in shipping details, submits the Order
and makes a payment. The customer can also aggregate the
Orders together to save the shipping costs (all this activity
is handled by process X). In this aggregation, main Order is
selected and Order Items from the other Orders are copied
to it. Then, the mainOrder is kept active (value of a remains
still as ‘active’) and the other Orders are kept in the database
and archived by setting a as ‘archived’. The main Order is
then paid and shipped to the customer. In the Accounting
module, monthly report is generated (process Y) and this
action consists of several steps. For preparation of this report,
data of customers Orders are used.

The Client module contains a defect: during the aggrega-
tion of theOrders, archive process is not completed properly
and the value of a is not set as ‘archived’. Thus, the respective
Order data objects defined by entity e became inconsistent.
Their inconsistency does not cause a defect in the Customer
module and purchase of the main Order (thus, cannot be
detected by path-based technique for process X).

Nevertheless, inconsistencyof archivedOrder data objects
causes a defect in the Accounting module (generated by
process Y). As value of attribute a is not properly set as
‘archived’, the monthly report counts also archived Orders
to the actual numbers.

In practical test design, it could be inefficient or even
impossible to detect such types of defects by apureworkflow-
based testing technique, for instance [6,12,21]. Recalling the
processes X and Y from the previous eShop example,

1. If the tester can reach the process X from the process
Y in the SUT and vice versa (when we model process
X and process Y by directed graphs, these graphs are

123

47

Cluster Comput

Fig. 1 A situation where a data
consistency defect is impossible
to be detected using a
workflow-based technique only

connected together by common edges), it could be quite
labor intensive for a practical testing process to explore
all possible paths in the graph to detect the discussed data
consistency defects.

2. If the tester cannot reach the process X from the process
Y in the SUT and vice versa (when we model process X
and process Y by directed graphs, these graphs are not
connected together by common edges), it is impossible
to design test cases detecting discussed data consistency
defects by a pure workflow-based testing technique. This
situation is depicted in Fig. 1. Practically, in some point,
the tester needs to switch from one workflow to another,
which we can either model using a directed graph (which
would be exhaustive and very difficult task), or we can
use a specialized data consistency technique.

In the both cases, a specialized test design technique, for
instance DCyT [14,18] is needed. Next, we explain its prin-
ciple in the following subsection.

1.2 Summary of DCyT and its static testing suggestions

The DCyT presented for instance by TMap Next [18] uses
a CRUD matrix M, containing Create, Read, Update and
Delete operations for data entities and functions of the SUT.

In DCyT, test case is created for particular data entity
to verify its consistency during the C, R, U, D operations,
which may be performed on this entity. Using the defined
concepts, the test case c for data entity e is a sequence of
test steps {s1, . . . , sn}, where each of these steps is a pair
(fs, os), and fs ∈ F , os ∈ {C, R,U, D} is an operation that
is performed on the data entity e by the function fs . Possible
functions fs ∈ F in the test case c are selected by the CRUD
matrix M.

Test case c starts with a Create operation, followed by
all possible Update operations and ends with a Delete opera-
tion. After everyCreate, Update andDelete operation, a Read
operation is performed. DCyT discusses practically two lev-
els of test coverage:

1. Selected Read operation for entity e is performed once
after each Create, Update or Delete (nevertheless it is not
defined which particular R operation should be selected),
and

2. All Read operations for entity e are carried out once after
each Create, Update or Delete operations. The second
method produces test cases with more steps, having a
larger potential to detect data consistency defects.

Regarding the test coverage, TMap [18] adds: All data
operations with data entities of the CRUD matrix performed
by individual functions should be covered by created test
cases.

Such very brief coverage criteria are too simple for practi-
cal use following this principle, we would create either very
lightweight, or very intensive test cases. To overcome this
shortage, we introduce intensity level of test case c, denoted
as int (c).

reads(e) = number of R operations in the respective col-
umn of the CRUD matrix M for entity e.

int (c) = number of R operations following each of the C,
U or D operations exercised on entity e by the test case c.

If reads(e) < int (c) then each of theC,UorDoperations
exercised on entity e are followed by reads(e) R operations.

Regarding the static testing possibilities, TMap version
of the DCyT technique describes these options only in high-
level, focusingonverificationof the completeness of theC,R,
U, D operations for each entity e ∈ E . When entire lifecycle
is not designed for and entity e, it is suggested as situation for
further investigation (this situation does not mean a design
defect automatically, nevertheless particular case has to be
analyzed to prevent these possible design defects).

1.3 Motivation for extension of the DCyT static testing

The DCyT static testing shall lead to more consistent design
documentation and test basis, having generally two goals: (a)
to lower defect ratio in the implemented system under test

123

48

Cluster Comput

Table 1 Types of CRUD matrices depending on the method of preparation

Type Description Who typically prepares Project phase

1 The CRUD matrix is constructed directly from the
SUT code by a manual analysis or a
semi-automated way

Developer or technical analyst Coding in progress/finished

2 Test analyst uses a CRUD matrix, which has been
created by other party during the system design on
the project

System designer or data architect Design specification

3 A CRUD matrix is assembled by test designer from
the business or technical specification of SUT
behavior. In this specification, data entities and
SUT functions using these data entities were
identified. Respective C, R, U, D operations
performed on the data entities by these functions
were then added to the matrix

Test designer Test analysis

4 Test designer designs a CRUD matrix in a way
different to Type 2. The test designer summarizes
only a list of data entities and SUT functions. Then,
the designer independently proposes corresponding
C, R, U, D operations by his/her domain
knowledge. In this process, the designer uses the
basic facts from the test basis only—he/she tries to
create the CRUD matrix in a most independent
way, separately from the detail of the test basis. To
get more information about this process, we can
consult with the potential business users

Test designer Test analysis

and (b) to design of more consistent and effective test cases
for detection of the data consistency defects in the SUT.

To utilize the potential of static testing based on CRUD
matrices fully, we propose extension to these static testing
suggestions. Using a CRUDmatrix, number of another rules
for static testing can be defined. Moreover, cross-verification
of the CRUD matrices created by different par-tied during
the software development project seems as a method worth
exploring.

Regarding the goals of the DCyT static testing presented
above, the extension we propose ad-dress both of them. After
explanation of these extensions, we further focus specifically
on the second goal consistency and effectiveness of the pro-
ducedDCyT test cases enhanced by per-formed static testing,
as this topic has been rarely discussed in the previous litera-
ture.

2 Static testing using CRUD matrices

The typical presentation of DCyT [14,18] does not discuss
themethods of CRUDmatrix preparation. TheDCyT implic-
itly works with CRUD matrix created by analyst or architect
designing the SUT, or CRUD matrix created by test analyst
from available test basis of other type. Nevertheless, there
are other possible methods, how to build a CRUD matrix
on a software development project. Having more versions of
CRUD matrices gives us more possibilities of static testing.

Generally, there are four ways that a CRUD matrix can
be created in a software development process. The types are
introduced in Table 1.

Type 1 corresponds directly to an SUT implementation.
Type 2 provides the information, which will be closest to a
particular SUT implementation. Type 4 provides the most
independence from a test designers point-of-view, and it can
differ from an SUT implementation. Type 3 is in the middle
of this scale.

From our observations of industrial projects, if any type is
created, the CRUD matrix Type 2 is the most common type.
Using the taxonomy presented in Table 1, the common def-
inition of DCyT, which is presented for example by [14,18]
implicitly works with Type 1 and Type 2 only. By introduc-
ing Types 1, 3 and 4, we provide new opportunities for static
testing: a cross-verification of CRUD matrices.

2.1 Cross-verification of the CRUD matrices

To extend the opportunities for static testing based on
CRUDMatrices, we propose the following cross-verification
method:

1. Prepare the test basis: two or more independently pre-
pared types of the CRUD matrices M1, . . .Mn , n =
2 . . . 4 for the SUT.

2. For the two selected CRUDmatrices M1 and M2, E1 is
a set of entities in the matrix M1; E2 is a set of entities

123

49

Cluster Comput

in the matrix M2; F1 is a set of functions in the matrix
M1, and F2 is a set of functions in the matrix M2.

3. Organize the matrices M1 and M2 to list the functions
F1, F2 and entities E1, E2 in the same order by using the
same criteria (e.g., alphabetical sort).

4. If E1 �= E2:

(a) Analyze to determine whether some of the entities
from E1 and E2 appearing as different entities are
actually the same entity. If yes, unify identification
of the entities;

(b) If still E1 �= E2, report the difference E1 − E2 to the
backlog of issues that must be clarified.

5. If F1 �= F2:

(a) Analyze and determine if some of the functions from
F1 and F2, which appear as different functions, are
actually the same functions. If yes, unify identifica-
tion of the functions;

(b) If still F1 �= F2, report the difference F1 − F2 to the
backlog of issues that must be clarified.

6. For each of the cells of the compared matrices that cor-
respond to e and f , e ∈ E1, e ∈ E2, f ∈ F1, f ∈ F2,
if the cell content differs in the C, R, U, D operations,
report the difference to the backlog of issues that must be
clarified.

7. When the issues in the backlog are clarified, mergematri-
ces M1 and M2 to a final CRUD matrix M, which will
represent a corrected version of the expected behavior for
the SUT.

A difference reported to the backlog can denote either
incomplete information in one of the CRUD matrices M1

and M2 or a potential defect, which is the subject of our
investigation.

The next set of static tests can be defined for one CRUD
matrix.

2.2 Extended static tests using a single CRUD matrix

For static testing performed on a single CRUD matrix, as
described in TMap Next [18], we propose the following
extension. For each of the cells in the matrix M, E is a
set of entities in the matrix M, and F is a set of functions in
the matrix M.

1. If entities e1 ∈ E and e2 ∈ E have the same set of
C, R, U, D operations in their respective columns in
the CRUD Matrix: analyze the situation to determine if
the entities are separated for a certain reason or if this
situation indicates unnecessary duplicity in the code (an
example is given in Fig. 2);

Fig. 2 Examples of refactoring opportunities identified in a CRUD
matrix

2. When entities e1 ∈ E and e2 ∈ E have the similar subset
of C, R, U, D operations in their respective columns
in the CRUD matrix (let use threshold 90% of these
operations), it could indicate a design optimization or
refactoring opportunity (an example is given in Fig. 2);

3. If functions f1 ∈ F and f2 ∈ F have the same set of C,
R, U, D operations in their respective lines in the CRUD
matrix: analyze to determine whether the functions are
separated for a certain reason or if this situation indicates
an unnecessary duplicity in the code;

4. When functions f1 ∈ F and f2 ∈ F have the simi-
lar subset of C, R, U, D operations in their respective
columns in the CRUD matrix (let use threshold 90% of
these operations), it could indicate a design optimization
or refactoring opportunity;

5. For each entity e ∈ E , verify how the deletion operation
is specified in the source documentation and how it is
reflected in the CRUD matrix:

(a) Entity e has to be deleted, which should be captured
by a D operation;

(b) Entity e has to be archived, instead of deleted, which
should be captured by a U operation for the entity e,
or by a D operation for the entity e and a C operation
for an archive entity e′, which is copied from e.

6. If there are requirements tomaintain a history of changes
for data entity e ∈ E after an update of this entity by
function f ∈ F , this fact may be explored in detail.
In addition to the respective U operations in the CRUD
matrix in the cells corresponding to e and f , the situation
may be captured by other U or C operations in thematrix
line corresponding to the function f . These additional
U or C operations would be performed on the entity
that maintains a record of the changes in entity e. The
particular situation depends on the technical details of
the implementation process.

123

50

Cluster Comput

7. If a function f contains name of an entity e in its name
or description, but no C, R, U, D operation is indicated
in the matrix cell corresponding to e and f , investigate
the situation for a possible design defect. Minimally,
the terminology used in the design shall be made more
unambiguous.

8. If more functions FC ⊂ F perform C operations for
entity e, this situation shall be investigated as it could
indicate a design optimization or refactoring opportunity
- nevertheless, not necessarily a design error.

9. If a set of functions F0 ⊂ F perform a C, R, U, D opera-
tion on the same entity e and |F0| > 0.5 |F |, investigate
the situation for a design optimization or refactoring
opportunity. Keeping a lifecycle of such “super-entity”
e consistent could be demanding from the viewpoint of
possible data consistency defects (an example is given
in Fig. 2).

10. By analogy, if a single function f performs a C, R,
U, D operation on a set of data entities E0 ⊆ E and
|E0| > 0.5 |E |, investigate the situation for a design
optimization or refactoring opportunity. Such “super-
functions” can be prone to defects, as they are usually
complex (an example is given in Fig. 2).

The situations described in steps 1–4 and 7 are interest-
ing from the general redundancy point-of-view in an SUT,
which is a frequent source of defects. In this analysis, possible
planned future extensions of the system should be consid-
ered.

Step 5 aims to detect another possible type of defect that is
related to the proper deletion or archival of the data entities.
From our experience, this is an area where design mistakes
can occur; these are expensive to correct after the imple-
mentation phase. The same analysis applies to step 6, which
focuses on the requirements for maintaining a history of the
changes in the data entities that are processed by an SUT.

Step 7 can detect design errors in the CRUD matrix or
ambiguous terminology used in the design documentation.
Steps 9 and 10 aims to identify too complex functions and
entitieswhich could be potentially prone to defects during the
development and regression in the later stages of the project.

3 Experiments

To measure the effectiveness of the proposed static test-
ing approach concerning production of more consistent and
effective DCyT test cases, we simulated a situation in which
an incomplete and inconsistent test basis was used as an input
to the creationofDCyT test cases. In this experiment,wegave
a group of test designers a design specification of existing
opens-source system (referred as experimental SUT further

on). Before doing that, we changed this specification in few
places to simulate design defects and inconsistencies, which
can naturally occur in a real software development project.
Without accessing this system and using the design specifi-
cation only, the group was creating DCyT test cases: the first
part of the group has not used any static testing; the second
part of the group was using the static testing extension pro-
posed in this paper. Finally, we evaluated the producedDCyT
test cases using a set of artificial defects inserted in the exper-
imental SUT to answer the following research questions:

Q1.1 How consistent are these DCyT test cases when
using the proposed static testing and when not? By con-
sistency of the test case, we mean real ability to execute
the test case in the SUT (defined in Table 2 further on).
Moreover,
Q1.2How is this consistency influenced by intensity level
(defined in Sect. 1.2) of these test cases?
Q2.1 How many potential data consistency defects can
be detected by these DCyT test cases when using the
proposed static testing and when not?
Q2.2How is this defect-detection potential influenced by
intensity level (defined in Sect. 1.2) of these test cases?

Details of the experiment follow in this section.

3.1 Experimental setup

As the experimental SUT, we used open-source MantisBT1

issue-tracker application written in PHP. We used its version
1.2.19. We re-engineered the design documentation of this
system, consisting of two artifacts: the workflow model and
the CRUD matrix corresponding to this model.

The workflow model of the system was covering its prin-
cipal parts, consisting of system screens S, modeling also
the high-level states of the system and business functions F
as transitions between them, |S| = 46 and |F | = 122. We
considered this model to describe the correct version of the
experimental SUT, and we refer to it as a Baseline workflow
model further on.

The CRUD matrix was created for principal conceptual
business data entities E , |E | = 12. These entities were: user,
project, project hierarchy, issue report, file attached to the
issue report, tag and issue tag, custom field, custom field
string, filter and issue monitoring. There were 183 C, R, U or
D operations in the matrix. By analogy, we considered this
CRUD matrix describing the correct version of the experi-
mental SUT, and we refer to it as a Baseline CRUD matrix
further on. Regarding the types of CRUDmatrices presented
in Table 1, this matrix is Type 2.

1 https://www.mantisbt.org/index.php

123

51

Cluster Comput

Table 2 Metrics for evaluation of DcyT test cases produced by experiment participants

Metric Description Research question

Steps(Tp) Average number of test steps of particular test cases of Tp Q1.1, Q1.2

steps(Tp) = ∑ |c| / ∣∣Tp
∣∣, c ∈ Tp

inc(c) Number of inconsistent test steps of the test case c Q1.1, Q1.2

The test step s ∈ c ∈ Tp is inconsistent when two subsequent C, R, U, D operations
performed by functions f1 ∈ s and f2 ∈ s in the test case c cannot be performed in the
SUT. This occurs because we cannot reach a proper state in the SUT to execute the
function f2 from the SUT state reached by function f1

inc(Tp) Average number of inconsistent test steps of all c ∈ Tp Q1.1, Q1.2

inc(Tp) = ∑
inc(c)/

∣∣Tp
∣∣, c ∈ Tp

inc_rate(c) inc_rate(c) = inc(c)/c Q1.1, Q1.2

inc_rate(Tp) inc_rate(T p) = inc(Tp)/steps(Tp) Q1.1, Q1.2

|Dc| Number of inserted defects, which can be potentially detected by a test case c ∈ Tp .
Dc ⊆ D.

Q2.1, Q2.2

A defect d ∈ D is considered potentially detected by test case c, if function fc making
the data entity e inconsistent and function fd ∈ Fd working with the data entity e later
on, causing the defective behavior of the SUT are called in sequence in the test case c.
Using the defined concepts, dD is considered potentially detected by c if fc ∈ sc,
fd ∈ sd , where f ∈ cd , fd ∈ Fd ∈ d, sc ∈ c, sd ∈ c and sc is preceding sd in c

e f f (Tp) Average number of inserted defects, which can be potentially detected by one test case, Q2.1, Q2.2

e f f (Tp) = ∑ |Dc| /
∣∣Tp

∣∣ , c ∈ Tp

Then, we inserted artificial data consistency defects D to
the experimental SUT. D is a set of inserted data consis-
tency defects. An inserted data consistency defect is a tuple
d = (e, fc, oc, Fd); where e ∈ E is a data entity, which is
in an inconsistent state that causes a defect, fc ∈ F is the
function that causes the data entity e to be inconsistent (for
definition refer to the Sect. 1), oc ∈ {C,U } is the particular
create or update operation that causes the data entity e to be
inconsistent when accessed by the function fc, Fd is a set
of pairs (fd , od), where fd ∈ F is a function that exhibits a
defective behavior in the SUT as a result of the inconsistency
of the data entity e and od ∈ {C, R,U, D} is the particular
operation performed by function fd on data entity e preced-
ing this defective behavior. In our experiment, |D| = 22.

To simulate a real software project situation, when the
available test basis (design documentation) is not complete,
consistent or up-to-date, we entered several artificial design
defects to the workflow model. In the Baseline workflow
model, we removed or changed ten functions from F and 1
state from S, creating the Inconsistent workflow model.

Similarly, we created an Inconsistent CRUD matrix from
the baseline one: In the Baseline CRUD matrix, we removed
7 R, 3 U, 1 D and 2 C operations from random positions.
Moreover, we added 7 R and 1 U operations to positions,
where such a defect was probably to be not obvious at first
glance to the test analyst.

The experimental group composed of test analysts and
students of the software testing course, who got intensive

training to the DCyT testing technique. There were 61 par-
ticipants in total joining the experiment.

3.2 Experiment method

In the experiment, we divided the participants into two dis-
junctive groups. The Group A was given the inconsistent test
basis andwas instructed to createDCyT test cases. TheGroup
B was also given the inconsistent test basis, but before the
design of the test cases, they were instructed to do the static
testing. Then we compared test cases produced by the both
groups from several aspects. The process in detail was:

3.2.1 Phase 1: test cases creation

Group A: design of DCyT test cases with inconsistent test
basis as an input without any static testing

1. To set the same level of knowledge, instructions how to
create DCyT were given to all the participants. Then,
each of the participants:

2. received Baseline workflow model
3. received Baseline CRUD matrix (Type 1 matrix, see

Table 1)
4. was instructed to create DCyT test cases for data entities

E, using theTMapversionof this technique [18].GroupA
was divided to three sub-groups: Group A1 was creating

123

52

Cluster Comput

Table 3 Experiment results
Group Static testing

used
int (c) ∀c ∈ Tp steps(Tp) inc(Tp) inc_rate(Tp) (%) e f f (Tp)

A1 No 1 9.67 3.26 33.7 0.51

A2 No 2 15.36 5.76 37.5 0.54

A3 No 3 18.52 6.67 36.0 0.67

B1 Yes 1 9.44 2.00 21.2 0.56

B2 Yes 2 15.88 2.66 16.7 0.67

B3 Yes 3 17.70 3.90 22.0 0.74

test cases with intensity level 1, Group A2 with intensity
level 2 and Group A3 with intensity level 3.

Group B: design of DCyT test cases with inconsistent test
basis as an input with proposed static testing techniques

1. To set the same level of knowledge, instructions how to
create DCyT were given to all the participants.

2. The proposed static testing technique was explained to
all the participants. Then, each of the participants:

3. received Baseline workflow model
4. received Baseline CRUD matrix (Type 1 matrix, see

Table 1)
5. was instructed to perform static testing before creation of

theDCyT test cases, including cross-verification between
CRUDMatrices and extended consistency verification of
a CRUD matrix proposed in this paper. For this cross-
verification, they were implicitly creating a matrix Type
3. When a question to clarify the inconsistencies in the
test basis was raised by the participant as result of per-
formed static testing process, it was answered by the
experiment organizers. For this, Baseline CRUD matrix
and a Baseline workflow model was used. Practically,
experiment organizers were simulating the business ana-
lyst, determining the right version of the specification in
the discussion with the participant.

6. was instructed to create DCyT test cases for data entities
E, using theTMapversion of this technique [18].GroupB
was divided to three sub-groups: Group B1 was creating
test cases with intensity level 1, Group B2 with intensity
level 2 and Group B3 with intensity level 3.

3.2.2 Phase 2: test cases evaluation

When the created DCyT test cases were collected from the
experiment participants, we evaluated their consistency and
efficiency by their simulated run in the experimental SUT
with insert-ed defects.

Experiment participants were using predefined MS Excel
template to fill the produced test cases. This allowed auto-
mated processing of the data. We created semi-automated

loader of the test cases to the Tapir (acronym from Test
Analysis Process Information Re-engineer) framework [13]
connected to MantisBT defect tracker of the same version as
we used for the experiment (1.2.19). The Tapir framework
reconstructs the workflow model based on the high-level
states (pages of the SUT) and transitions between them
(SUT functions). Thus, in the Tapir framework, we had
available exact workflow model of this SUT, defined by
the same elements as the Baseline workflow model. Before
the experiments, we verified both of these models to be
aligned. Together with this, we added artificial data consis-
tency defects D to the SUT model in the Tapir framework.

The produced test cases were loaded to the Tapir frame-
work and evaluated for their consistency and potential to
detect inserted data consistency defects D. For this evalua-
tion, we used metrics presented in Table 2. We denote a set
of all test cases produced by a particular participant as Tp.
The test case has been defined in Sect. 1.2.

Regarding the inc(c), during the evaluation of the consis-
tency of the test cases, when a step of the test case is identified
as inconsistent, the rest of the test case steps are considered
also as inconsistent (the test steps cannot be executed in the
flow in the sequence defined by the test case).

Regarding the |Dc|, during the evaluation of the ability of
the test cases to detect inserted defects, when a step of the test
case is identified as inconsistent, the rest of the test case is
ignored (to simulate a real situation when the test case cannot
be executed in the SUT).

3.3 Results

In this section, we present the results of the experiment per-
formed by the method described above.

During the evaluation, we analyzed 939 test cases having
15,153 steps in total. During the analysis of the test cases
using themethod introduced above, 4761 test steps have been
evaluated as inconsistent.

Table 3 gives evaluation metrics averaged for all test cases
produced by all participants in the particular group. For aver-
aging, arithmetic mean is used.

123

53

Cluster Comput

Figure 3depicts average ratios of the inconsistent test steps
in test cases produced by the individual experiment groups.

In Table 4 we summarize differences of the indicators
presented in Table 3 in comparison of the individual exper-
imental groups. For each of three test case intensity levels,
we compare a respective group using the proposed static test-
ing methods with the group, which was not using the static
testing.

Fig. 3 Avg. ratio of consistent and inconsistent steps in the test cases
for individual groups

An average improvement when using proposed static
testing for all three intensities was 15.7%. The average
improvement in data consistency defect detection potential
of the test cases, measured by e f f (Tp) for all three inten-
sities was −0.08. Negative value in the column e f f (Tp) of
Table 4 means improvement.

To have more detailed insight into inconsistency of the
analyzed DCyT test cases, we present its distribution in
Table 5 for the individual groups. In Table 5, inc(x, y)
stands for ratio of test cases, having inc_rate(c) ≥ x and
inc_rate(c) < y. Values x and y are in percentage.

Figure 4 depicts the distribution presented in Table 5. In
the graphs, we can see the decreasing inconsistency of the
test cases produced with the help of static testing, whereas
no significant trend in distribution can be observed for the
test cases produced without static testing.

The data in Table 3 show, that the average potential of
the DCyT test case to detect the data consistency defects
measured by e f f (Tp) grows with the intensity level of the
test cases inc(Tp). The trend is depicted in Fig. 5.

Table 4 Differences between test cases produced by DCyT with and without proposed static testing

Comparison
groups

int (c) ∀c ∈ Tp steps(Tp)An −
steps(Tp)Bn

inc(Tp)An− inc(Tp)Bn inc_rate(Tp)An −
inc_rate(Tp)Bn (%)

e f f (Tp)An − e f f (Tp)Bn

A1 and B1 1 0.24 1.26 12.5 −0.05

A2 and B2 2 −0.52 3.10 20.7 −0.13

A3 and B3 3 0.82 2.77 14.0 −0.07

Table 5 Distribution of test case inconsistencies in the individual experiment groups

Group inc(0, 10)
(%)

inc(10, 20)
(%)

inc(20, 30)
(%)

inc(30, 40) (%) inc(40, 50) (%) inc(50, 60) (%) inc(60, 70) (%) inc(70, 100) (%)

A1 6.9 13.9 21.8 9.9 7.9 17.8 15.8 5.9

A2 6.9 13.0 13.0 20.6 16.0 13.0 9.2 8.4

A3 6.5 15.3 20.3 11.5 4.5 19.6 10.8 11.5

B1 28.1 21.9 26.6 14.1 4.7 3.1 0.0 1.6

B2 23.1 30.8 19.8 16.5 1.1 3.3 2.2 3.3

B3 27.6 20.1 32.1 12.7 2.2 0.7 4.5 0.0

Fig. 4 Distribution of
inconsistent test cases in the
individual experiment groups

123

54

Cluster Comput

Fig. 5 Average number of inserted defects, which can be potentially
detected by one test case

We observed no significant trendwhen analyzing numbers
of individual test cases detecting particular inserted defects.
The patterns in data seemed rather random. Thus, we don’t
present these details in this section.

4 Evaluation of the results and discussion

In this section, we analyze, discuss and conclude the exper-
iment results. Starting with average total number of test
steps of the produced DCyT test cases, test cases (steps(Tp)

in Table 3), this number grows with the intensity level
int (c)∀c ∈ Tp. This is an expected behavior, as the principle
of the defined intensity level is to determine the number of R
operation test steps following the C, U, D operations in the
DCyT test cases.

Further on, analyzing the average total number of steps
of produced test cases (steps(Tp) in Table 3), no significant
change has been observed using the static testing technique.
In any of three intensity levels, no significant difference can
be found. When analyzing the complete aggregated data, for
B groups, the differences is caused by (1) corrections of the
inconsistent test basis: after its correction, the test steps of
produced DCyT test cases differed in few places by prin-
ciple, and (2) slight, but certain natural inaccuracy of the
test cases produced by individual test designers in the same
experimental group.

For all three intensity levels, the test cases produced by
DCyT with proposed static testing have significantly less
inconsistent steps (questionQ1.1, inc(Tp) and inc_rate(Tp)

in Table 3, differences summarized in Table 4). These differ-
ences in inc_rate(Tp) are 12.5% for int (c) = 1, 20.7% for
int (c) = 2 and 14.0% for int (c) = 3,∀c ∈ Tp. This is an
important finding, having the consequence for the practical
test design process.

To answer question Q1.2, the next step was to analyze, if
the intensity level has an influence on these differences. Here,
no significant trend has been observed in the complete aggre-
gated data. In absolute numbers (inc(Tp) in Table 3), the

number of inconsistent test case steps growwith the intensity
level, nevertheless when analyzing the relative inconsistency
of the test cases (inc_rate(Tp) in Table 3), we observe no
significant trend. To analyze this issue deeper, experiments
withmore intensity levels andmore SUTs shall be conducted,
as also a model of particular SUT would play a role in this
case.

As observed fromdata, the defect detection potential of the
test cases created without proposed static testing (question
Q2.2, e f f (Tp) in Table 3) grows with the intensity level,
from 0.51 for int (c) = 1 to 0.67 for int (c) = 3,∀c ∈ Tp.
Due to the principle of intensity level, this is a logical result.

What is more important, the defect detection potential
grows with performed static testing (question Q2.1, e f f (Tp)

in Table 3, differences summarized in Table 4). These differ-
ence is 0.5 for int (c) = 1, 0.13 for int (c) = 2 and 0.7 for
int (c) = 3,∀c ∈ Tp. In this point, the trend is the same as
in the consistency of the test cases.

The most significant observations are the growth of the
consistency of the analyzed DCyT test cases when apply-
ing the static testing before the design of the test cases and
together with this trend, the growth of potential of the test
cases to detect data consistency defects in the SUT.

5 Threats to validity

Experiments of this type are very challenging to be performed
at a real industry software development project in praxis; it is
practically impossible to run the same projects twice with a
different quality assurance scenarios. In addition, final soft-
ware product quality is also influenced by many soft factors,
which bias the results. Thus, we made our experiment to be
as close to a real case as possible: we used real SUT, for
which we knew its correct model (using the Tapir frame-
work), we used an inconsistent test basis composing from
workflow model and CRUD matrix and we let the experi-
ment participants behave as when creating the test cases for
a real project. For evaluation of the test cases consistency and
defect detection potential, we used an automated system built
on top of Tapir framework to minimize possible human mis-
takes. Despite this fact, our experimental setup has potential
threats to validity, which we discuss in this section.

Lets start with potential possible flaws in the automated
evaluation system of the DCyT test cases. First, the SUT
reengineered model of the Tapir could also be inconsistent.
Nevertheless, we consider this risk mitigated, as MantisBT
model in the Tapir framework underwent many verifica-
tions and previous experiments. The next concern can be
raised regarding the correspondence of the Baseline work-
flow model to the SUTmodel in the Tapir framework. We
minimized the possible inconsistencies between these mod-
els by thorough check at the start of the experiment.

123

55

Cluster Comput

Next set of concerns can be raised regarding the exper-
iment set up and soft factors during the experiment. The
participants could know MantisBT before the experiment,
as this issue tracker is commonly known and used by the
software engineers. Nevertheless, as the MantisBT was not
available to the participants during the test design process
and they were explicitly instructed to not consult the created
test cases with the SUT, this risk shall be minimized. Also,
if some of the participants benefited from his knowledge of
the SUT during the experiment, such a case was randomly
distributed in the experimental groups.

Regarding the possible learning effect, we mitigated this
risk by letting each of the experimental group creating only
one set of test cases of particular intensity level and style
(creation of the test cases with or without proposed static
testing).

The effectiveness of the created DCyT test cases are
varying by particular experiment participant analytic skills.
Nevertheless this is a natural effect present in the test design
process; the participants were randomly distributed to the
individual groups, which shall also minimize the influence
of this effect to the results.

Another concern can be raised regarding the artificial
nature of the inserted defects. In their modeling and def-
inition, we tried to capture the nature and principle of data
objects consistency defects, as observed in a number of previ-
ous industry projects we were involved in or were observing.

6 Related work

The Data Cycle Test (DCyT) has been presented for example
by [14,18]. A typical description of the technique consists
of a guideline of how to create a CRUD matrix, several
high-level comments about the possibility of static testing
using a CRUD matrix and a method for creating dynamic
test cases that are based on a sequence of Create, Update,
Read and Delete operations that are exercised on a particular
data entity.

In the TMap Next description of the Data Cycle Test [18],
static testing uses a standard CRUD matrix and bases on
verification of the completeness of the C, R, U, D operations
for each entity e ∈ E . This approach is valid; nevertheless,
it can be extended by some other techniques, introduced in
this paper.

Even though data flow testing is the subject of much
research interest, the goal of our study has not been directly
addressed in the literature. Nevertheless, some previous
results are related, and these results should be analyzed.

In the area of static testing, the work exploring the data
flow analysis principle focuses on detection of design errors
inworkflowdesign [15,20,30], or in detection and automated
correction measures that are used for the same problem [2].

In these proposals, the main use case is validation of the pro-
cess design and notations different to CRUDmatrix are used
for SUTmodeling. For instance, [28] uses UML activity dia-
grams, [20] is using UML statechart diagrams. In proposals
[2,30], Petris net is used as a data flow modeling structure.
In praxis, this approach is suitable for static testing, where
BPMN diagrams or UML statechart diagrams are available
as the test basis. Similarly, data flow analysis was also used
for verification ofweb servicesmodels inWS-BPELnotation
[22]. Here, data dependencies are identified and reflected in
the verification process.

An alternative approach to static testing of a database
design may be based using the Formal Concept Analysis
[29]. Applications of this approach are documented either to
detect the faults on the source code level [8], to detect the
design flaws on the class modeling level [1], or, on the more
general level to verifymodel in terms of used objects and their
events, including dependencies between the objects [24].
Conceptually, this approach is similar to a CRUD-matrix
based technique, but the proposal focuses only on verification
of the SUT design. Also alternative applications in software
testing exist for Formal Concept Analysis technique—for
instance to generate a Feature Model [7], which can further
serve as a basis for test data generation by the Constraint
Interaction Testing technique.

An aided database design that is based on an extension of
the CRUD matrix is proposed by [17]. The authors of that
paper consider the CRUDmatrix to be an insufficient source
of information, and they extend the matrix to the attribute
level.

In the dynamic testing area, the concept of DCyT is, in
principle, similar to a Data Flow Analysis technique, pre-
sented for example by [9,11,23,26,31]. Generally, data flow
analysis is an area where previous research has been con-
ductedmore intensely, and it considers an aspect of efficiency
and testing coverage, for instance [25,32]. For test data gen-
eration in this technique, various alternative algorithms are
explored, for instance [19]. This technique is used either on
the code-flow level [16], or also on object level, for instance
[10].

However, DCyT, which is the subject of our research,
works on a higher level of abstraction. Data Flow Analysis
is principally a white-box test design technique that operates
at the program code level, and it works with particular val-
ues of the program variables. Set-use pairs are defined for
three atomic actions: definition of the variable, use of the
variable and destruction of the variable. From all possible
set-use pairs, some are allowed, whereas some indicate sus-
picion of the possible defect in the code. Such relations do
not hold in CRUD matrix, used by the DCyT. In addition,
the level of abstraction differs: in DCyT, we are working
with general data entities that are stored by the SUT, and are
used by the SUT functions, which are usually exercised by

123

56

Cluster Comput

functional testing. Here, we typically approach the SUT as a
black-box that exists between the data layer and the testers
interaction with the SUTs front-end.

Analysis of data flows can be also used to improve cover-
age criteria for statechart testing, as explored by [3–5]. In this
approach, define and use relations are used for data objects.
The aim of this approach is to increase test coverage and
reduce costs of the statechart-based testing. In difference to
our approach,CRUDmatrices are not used andmore accurate
and consistent SUT model is needed.

Sun [27] proposes an alternative approach to data flow
verification in SUT processes. In this approach, Data-Flow
Matrices are used. TheData-FlowMatrix, similarly toCRUD
matrix contains read andwire operations performed bywork-
flow actions on particular data objects. In difference to the
CRUD matrix, the proposed Data-Flow Matrix uses read
and write operations only. Then, data flow information is
integrated with the workflow model and data flow anoma-
lies (principally missing data, redundant data or conflicting
data) are detected. In our approach, we work with conven-
tional CRUD Matrix on a conceptual level, as a test basis
commonly available (or relatively easy to be created by the
analysts and test designers) in the software development
projects.

7 Conclusion

In this paper, we propose an extension to the conventional
approach of static testing based on CRUDMatrices [14,18].
This static testing has two general goals: (a) to lower defect
ratio in the implemented SUT and (b) to lead the design of
more consistent and effective test cases for detection of the
data consistency defects in the SUT.

The proposed extension addresses these both goals. In par-
ticular, we propose cross-verification between various types
of CRUD Matrices created by different parties in various
stages of the project and extension of static tests using the
single CRUD matrix.

After the presentation of these extensions, we focused
specifically on the second goal consistency, and effective-
ness of the producedDCyT test cases enhanced by performed
static testing, as this topic has rarely been discussed in the
previous literature.

To investigate the effectiveness of the static testing in this
context, we conducted an experiment simulating a situation
inwhich an incomplete and inconsistent test basiswas used as
an input to the creation of DCyT test cases. Real issue track-
ing system MantisBT was used as experimental SUT. We let
several groups of test designers create DCyT test cases, part
of them were using the proposed static testing, part of them
not. Next, we evaluated the produced DCyT test cases using
and automated method. In this process, we utilized the Tapir

framework [13] connected to MantisBT issue tracker. This
gave us an exact workflow model of this SUT, defined by
the same elements as the test basis model given to the exper-
iment participants. Using this support, we evaluated DCyT
test cases created by the experimental groups. Together with
this process, we added artificial data consistency defects to
the SUTmodel in the Tapir framework to evaluate the poten-
tial of the DCyT test cases to detect these defects.

Whenwecompared theDCyT test cases of various intensi-
ties produced by the experimental groups using the proposed
static testing with the groups not using this method, no sig-
nificant trend has been identified in the average total number
of test steps of the produced DCyT test cases. Also, no sig-
nificant difference has been observed when analyzing the
relation of test cases intensity to their consistency.

Nevertheless, for all three intensity levels, the test cases
produced by DCyT with proposed static testing have sig-
nificantly less inconsistent steps (15.7% in average for all
three test case intensities in range 1 to 3), which is the most
important result from a practical testing process viewpoint.
Together with this effect, defect detection potential of the
DCyT test cases produced by the experimental groups using
the static testing was significantly higher (0.08 in average
for all three test case intensities in range 1 to 3, measured by
eff(Tp) metric, giving an average number of inserted defects,
which can be potentially detected by one test case) than the
same metric for the test cases produced by DCyT without
proposed static testing only. Despite the fact we used defect
injection technique to evaluate this effectiveness, the results
are significantly in favor of the systematic static testing per-
formed as a part of the test design process.

Regarding the related work and concepts already applied
in the data consistency testing, innovation of the proposal
can be summarized in the following aspects. (1) In software
engineering and testing process, usually only one CRUD
matrix is created during design or testing phase of the project.
By proposing cross-verification of multiple CRUD matri-
ces created by different parties on the project, which is
not commonly applied idea, new, potentially cost efficient
possibilities of static testing are available. (2) Suggestions
to optimize the SUT design (e.g. duplicate data entities
or functions, identification of possible “super-entities” or
“super-functions”) are in the current praxis performed rather
as part of model checking or revisions of the database design.
In this process, analysts and database designers play a major
role and testing specialists are not involved to this process.
However, involvement of the testers in the process with their
independent view can make the process more efficient and
can lead to detection of more design flaw, in phase, where
removal of these design defects is relatively not expensive
in comparison to the later phases in the software develop-
ment life-cycle. (3) The current industry-praxis reference
literature, for example [14,18], comments only on a basic

123

57

Cluster Comput

possibilities of static testing using the CRUD matrices. This
article summarizes possible extensions of this static testing,
available to the test practitioners.

Acknowledgements This research is conducted as a part of the
project TACR TH02010296 Quality Assurance System for Inter-
net of Things Technology and internal grant of CTU in Prague
SGS17/097/OHK3/1T/13.

References

1. Arévalo,G., Falleri, J.R.,Huchard,M.,Nebut, C.: Building abstrac-
tions in class models: formal concept analysis in a model-driven
approach. In: MoDELS, vol. 4199, pp. 513–527. Springer, Berlin
(2006)

2. Awad, A., Decker, G., Lohmann, N.: Diagnosing and Repairing
Data Anomalies in Process Models, pp. 5–16. Springer, Berlin
(2010). doi:10.1007/978-3-642-12186-9-2

3. Briand, L., Labiche, Y., Lin, Q.: Improving the coverage criteria
of uml state machines using data flow analysis. Softw. Test. Verif.
Reliab. 20(3), 177–207 (2010). doi:10.1002/stvr.v20:3

4. Briand, L., Labiche, Y., Liu, Y.: Combining uml sequence and
state machine diagrams for data-flow based integration testing. In:
Proceedings of the 8th European Conference on Modelling Foun-
dations and Applications, ECMFA’12, pp. 74–89. Springer, Berlin
(2012). doi:10.1007/978-3-642-31491-9-8

5. Briand, L.C., Labiche, Y., Lin, Q.: Improving statechart testing
criteria using data flow information. In: 16th IEEE International
Symposium on Software Reliability Engineering (ISSRE’05), pp.
10–104 (2005). doi:10.1109/ISSRE.2005.24

6. Bures, M., Cerny, T., Klima, M.: Prioritized Process Test:
More Efficiency in Testing of Business Processes and Work-
flows, pp. 585–593. Springer, Singapore (2017). doi:10.1007/
978-981-10-4154-9-67

7. Carbonnel, J., Huchard, M., Miralles, A., Nebut, C.: Feature model
composition assisted by formal concept analysis. In: 12th Interna-
tional Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), pp. 28–29 (2017)

8. Cellier, P., Ducassé,M., Ferré, S., Ridoux,O.: Formal concept anal-
ysis enhances fault localization in software. Lect. Notes Comput.
Sci. 4933, 273–288 (2008)

9. Chandra, A., Singhal, A.: Study of unit and data flow testing in
object-oriented and aspect-oriented programming. In: Innovation
and Challenges in Cyber Security (ICICCS-INBUSH), 2016 Inter-
national Conference on, pp. 245–250. IEEE (2016)

10. Denaro, G., Margara, A., Pezze, M., Vivanti, M.: Dynamic data
flow testing of object oriented systems. In: Proceedings of the 37th
International Conference on Software Engineering-Volume 1, pp.
947–958. IEEE Press (2015)

11. Denaro, G., Pezze, M., Vivanti, M.: On the right objectives of
data flow testing. In: Software Testing, Verification and Valida-
tion (ICST), 2014 IEEE Seventh International Conference on, pp.
71–80. IEEE (2014)

12. Dwarakanath, A., Jankiti, A.: Minimum number of test paths
for prime path and other structural coverage criteria. In: Pro-
ceedings of the 26th IFIP WG 6.1 International Conference on
Testing Software and Systems—Volume 8763, ICTSS 2014, pp.
63–79. Springer, New York Inc., New York (2014). doi:10.1007/
978-3-662-44857-1-5

13. Frajtak, K., Bures, M., Jelinek, I.: Exploratory testing supported by
automated reengineering of model of the system under test. Clust.
Comput. 20(1), 855–865 (2017). doi:10.1007/s10586-017-0773-z

14. Grood, D.J.D.: TestGoal: Result-Driven Testing, 1st edn. Springer
Publishing Company, Heidelberg (2008)

15. Hema,M., Anup, S., Sen, K., Bagchi, A.: Detecting data flow errors
in workflows: a systematic graph traversal approach (2007)

16. Jorgensen, P.C.: Software testing: a craftsmans approach. CRC
Press, Hoboken (2016)

17. Jukic, B., Jukic,N.,Nestorov, S.: Process and data logic integration:
Logical links between uml use case narratives and er diagrams. J.
Comput. Inf. Technol. 21(3), 161–170 (2013)

18. Koomen, T., Aalst, L.V.D., Broekman, B., Vroon, M.: TMap Next,
for Result-driven Testing. UTN Publishers, ’s-Hertogenbosch
(2013)

19. Kumar, S., Yadav, D., Khan, D.: Artificial bee colony based test
data generation for data-flow testing. Indian J. Sci. Technol. 9(39)
(2016)

20. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process
models for object life cycle compliance. In: Proceedings of the
5th International Conference on Business Process Management,
BPM’07, pp. 165–181. Springer, Berlin (2007). http://dl.acm.org/
citation.cfm?id=1793114.1793131

21. Li,N., Li, F.,Offutt, J.: Better algorithms tominimize the cost of test
paths. In: Proceedings of the 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification and Validation, ICST ’12,
pp. 280–289. IEEE Computer Society, Washington, DC (2012).
doi:10.1109/ICST.2012.108

22. Moser, S., Martens, A., Gorlach, K., Amme, W., Godlinski, A.:
Advanced verification of distributedWS-BPEL business processes
incorporating CSSA-based data flow analysis. In: IEEE Interna-
tional Conference on Services Computing (SCC 2007), pp. 98–105
(2007). doi:10.1109/SCC.2007.22

23. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program anal-
ysis. Springer, Berlin (2015)

24. Poelmans, J., Dedene, G., Snoeck, M., Viaene, S.: Using formal
concept analysis for the verification of process-data matrices in
conceptual domain models. In: Proceedings of the IASTED Inter-
national Conference on Software Engineering, pp. 79–86. Acta
Press (2010)

25. Prabu, M., Narasimhan, D., Raghuram, S.: An effective tool for
optimizing the number of test paths in data flow testing for anomaly
detection. In: Computational Intelligence, Cyber Security and
Computational Models, pp. 505–518. Springer, Berlin (2016)

26. Su, T., Wu, K., Miao, W., Pu, G., He, J., Chen, Y., Su, Z.: A survey
on data-flow testing. ACM Comput. Surv. 50(1), 5 (2017)

27. Sun, S.X., Zhao, J.L.,Nunamaker, J.F., Sheng,O.R.L.: Formulating
the data-flow perspective for business process management. Inf.
Syst. Res. 17(4), 374–391 (2006). doi:10.1287/isre.1060.0105

28. Sundari, M.H., Sen, A.K., Bagchi, A.: Detecting data flow errors
in workflows: a systematic graph traversal approach. In: WITS
2007—Proceedings, 17th Annual Workshop on Information Tech-
nologies and Systems, pp. 133–139 (2007). www.scopus.com

29. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal con-
cept analysis support for software engineering activities. Formal
Concept Anal. 3626, 250–271 (2005)

30. Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-Flow Anti-
Patterns: Discovering Data-Flow Errors in Workflows, pp. 425–
439. Springer, Berlin (2009)

31. Waheed, S.Z., Qamar, U.: Data flow based test case generation
algorithm for object oriented integration testing. In: Software
Engineering and Service Science (ICSESS), 2015 6th IEEE Inter-
national Conference on, pp. 423–427. IEEE (2015)

32. Wedyan, F., Ghosh, S., Vijayasarathy, L.R.: An approach and tool
for measurement of state variable based data-flow test coverage
for aspect-oriented programs. Information and Software Technol-
ogy 59, 233 – 254 (2015). doi:10.1016/j.infsof.2014.11.008. http://
www.sciencedirect.com/science/article/pii/S0950584914002547

123

58

Cluster Comput

Miroslav Bures received his
Ph.D. at Czech Technical Uni-
versity in Prague, Faculty of
Electrical Engineering, where he
currently works as a researcher
and a senior lecturer in software
testing and quality assurance.
His research interests are model-
based testing (process and work-
flow testing, data consistency
testing) efficiency of test automa-
tion (test automation architec-
tures, assessment of automated
testability, economic aspects)
and quality assurance methods

for Internet of Things solutions, reflecting specifics of this technology.
In these areas he also leads several R&D and experimental projects. He
is a member of Czech chapter of the ACM, CaSTB, ISTQB Academia
work group and participates in broad activities in professional testing
community.

Tomas Cerny received his B.S.,
Engineer and Ph.D. degrees from
Czech Technical University, the
Faculty of Electrical Engineering
of Czech Technical University
in Prague, Czech Republic. He
received his M.S. degree from
Baylor University. He is Assis-
tant Professor of Computer Sci-
ence currently at Baylor Univer-
sity where he conducts research
on Aspect-Oriented Program-
ming, Security, and Software
Engineering mostly related to
DistributedArchitectures includ-

ing SOA, MSA or IoT.

Karel Frajtak has graduated
the Czech Technical University
in Prague, Czech Republic. He is
currently a postgraduate student
in Software Engineering Group
at the CTU in Prague. In his
research he focuses on model-
based testing area and explores
possible combinations and syn-
ergies betweenmodel-based test-
ing and exploratory testing tech-
niques to find more efficient
methods of automation of the
current testing processes.

Bestoun S. Ahmed obtained his
B.Sc. degree in Electrical and
Electronic Engineering from the
University of Salahaddin-Erbil in
2004, hisM.Sc. degree fromUni-
versity Putra Malaysia (UPM)
in 2009, and his Ph.D. degree
from University Sains Malaysia
(USM), Software Engineering,
in 2012. He worked as a research
fellow attached to the Software
Engineering Research Group in
the Universiti Sains Malaysia
(USM). His next engagement
was as a senior lecturer at the

Salahaddin University. He spent one year doing his post doctoral
research in the Swiss AI Lab IDSIA (Istituto Dalle Molle di Studi
sull’Intelligenza Artificiale), Switzerland. Currently, he is an assistant
professor at the department of computer science, Czech Technical Uni-
versity in Prague. His main research interest include Combinatorial
Testing, Search Based Software Testing (SBST), Computational intel-
ligence, and High Performance Computing. He serves as a reviewer
and editorial member for many international journals and organization
committee member of many international conferences.

123

59

9 Appendix C: On the e�ectiveness of combinatorial inter-

action testing: A case study

[A.3] Bures, Miroslav, and Bestoun S. Ahmed. On the e�ectiveness of combinatorial in-
teraction testing: A case study. In 2017 IEEE International Conference on Software
Quality, Reliability and Security (IEEE International Workshop on Combinatorial
Testing and its Applications, Proceedings companion volume), pages 69-76. IEEE,
2017.

60

On The Effectiveness of Combinatorial Interaction
Testing: A Case Study

Miroslav Bures
Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University
Karlovo nám. 13, 121 35 Praha 2

Czech Republic
Email: buresm3@fel.cvut.cz

Bestoun S. Ahmed
Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University
Karlovo nám. 13, 121 35 Praha 2

Czech Republic
Email: albeybes@fel.cvut.cz

Abstract—Combinatorial interaction testing (CIT) stands as
one of the efficient testing techniques that have been used in
different applications recently. The technique is useful when
there is a need to take the interaction of input parameters
into consideration for testing a system. The key insight the
technique is that not every single parameter may contribute to the
failure of the system and there could be interactions among these
parameters. Hence, there must be combinations of these input
parameters based on the interaction strength. This technique has
been used in many applications to assess its effectiveness. In this
paper, we are addressing the effectiveness of CIT for a real-world
case study using model-based mutation testing experiments. The
contribution of the paper is threefold: First we introduce an
effective testing application for CIT; Second, we address the
effectiveness of increasing the interaction strength beyond the
pairwise (i.e., interaction of more than two parameters); Third,
model-based mutation testing is used to mutate the input model
of the program in contrast to the traditional code-based mutation
testing process. Experimental results showed that CIT is an
effective testing technique for this kind of application. In addition,
the results also showed the usefulness of model-based mutation
testing to assess CIT applications. For the subject of this case
study, the results also indicate that 3 − way test suite (i.e.,
interaction of three parameters) could detect new faults that
can not be detected by pairwise.

I. INTRODUCTION

In software systems, the interaction of input parameters is
strong potential source of failure. Most of the test design tech-
niques are considered input parameters individually for fault
detection of a software-under-test (SUT). However, evidence
showed that interaction among input parameters is a strong
source of failure[1], [2], [3]. Combinatorial Interaction Testing
(CIT) (sometimes called t − way or t − wise testing where
t is the interaction strength) is an approach to overcome this
shortage in the test design methods. CIT takes the interaction
of two or more inputs in a generated test suite to help early
fault detection in the testing life cycle [4]. The key insight
of this testing approach is that, not every input parameter of
the system contributes to the faults of the system and most of
the faults are addressed by including interactions of only a few
number of input parameters. To this end, the CIT is also useful
to minimize the size of test suites by reducing the number of
test cases and thus to prevent from the exhaustive testing as it

is impractical and often also impossible from project resources
viewpoint[5].

For instance, pairwise testing (i.e., 2 − way testing) is a
common approach and has been applied effectively in many
practical testing situations [6]. However, empirical evidence
have shown that software failures may be triggered by more
than two input parameters and values [4]. Such cases have
been identified as t − way CIT where t > 2.

Different strategies have been developed to generate t−way
test suites. In fact, some strategies have tried to generate
test suites for high interaction strengths like t = 12 [7].
However, these strategies faced two main criteria, efficiency,
and effectiveness. Efficiency is characterized by the size of the
generated test suites as compared to other strategies, whereas,
the effectiveness is characterized by the applicability of the
generated test suites [8]. In this paper, we are focusing on the
second criterion.

In general, effectiveness deals with the applicability of the
generated test suite by the CIT strategy. Within this context,
there are also remarkable issues. In this paper, we are trying
to address three main issues. First, we are seeking to address
a new testing application of CIT approach, that shows the
effectiveness of the generated test suites. Second, we are
seeking to show the usefulness of those test suites beyond
pairwise testing. Third, we are trying to show the usefulness
of model-based mutation testing to assess the effectiveness of
CIT by following the concepts of code-based mutation testing.
We have used a well-known open source software as a subject
of our case study. Model-based mutation testing is used within
the case study as a framework to assess the effectiveness. We
injected the software with different mutant based on the input
models and then tried to detect those mutants by generated
t−way test suites. Here, mutation testing concepts is used to
mutate the input models of the input parameters and then we
tried to measure the number of detected mutated inputs.

The rest of this paper is organized as follows. Section II
gives preliminaries and necessary mathematical backgrounds
about CIT. Section III shows the related works achieved so
far in this direction. Section IV illustrates the experimental
setup, and Section V shows and discusses the results of the

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.20

69

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.20

69

61

experiments. Section VI presents and discusses the threats that
may affect the validity of the experiments. Finally, Section VII
gives the concluding remarks of the paper.

II. COMBINATORIAL INTERACTION TESTING (CIT)

Combinatorial Covering Array (CA) is a mathematical
object that is used as a base in CIT. Originally, CA has
been gained more attention as a practical alternative of oldest
mathematical object called Orthogonal Array (OA) that has
been used for statistical experiments [9]. An OAλ(N ; t, k, v)
is an N × k array, where for every N × t sub-array, each
t − tuple occurs exactly λ times, where λ = N/vt; t is
the combination strength; k is the number of input functions
(k ≥ t); and v is the number of values associated with each
input parameter [10]. Fig. 1(a) illustrates an orthogonal array
OA(9; 2, 4, 3) that contains value (v = 3), with interaction
degree (t = 2) , and input factors (k = 4) can be generated by
nine rows. For real applications, practically, it is very hard to
translate these firm rules except for small systems with small
number of input parameters and values. Hence, there is no
significant benefit in case of medium and large size systems,
as it is very hard to generate OA for them. In addition, based
on the aforementioned rules, it is not possible to represent OA
when there are different levels for each input parameters.

To address the limitations of OA, CA has been introduced.
A CAλ(N ; t, k, v) is an N × k array over (0, ..., v − 1) such
that every N × t sub-array contains all ordered subsets from
v values of size t at least λ times, where the set of column
B = {b0, ..., bt−1} ⊇ {0, ..., k − 1} [2]. In this case, each
t − tuple is to appear at least once in a CA. Fig. 1(b) shows
an example of CA with N = 9, k = 4, v = 3, and t = 2.

In the case when the number of component values varies,
this can be handled by Mixed Covering Array (MCA). A
MCA(N ; t, k, (v1, v2, . . . vk)), is an N ×k array on v values,
where the rows of each N×t sub-array cover and all t−tuples
of values from the t columns occur at least once. For more
flexibility in the notation, the array can be presented by
MCA(N ; t, vk1

1 vk2
2 ..vkk). Fig.1(c) shows a MCA with size 9

that has four input parameters, with two input parameters
having three values each and the other two input parameters
having two values each.

III. RELATED WORKS

CA has been used to solve many complex problems. It has
been used widely in different applications such as hardware
testing [11], advance material testing [12], gene expression
regulation [13], performance evaluation of communication
systems [14] and many other applications [15]. It has also
been used as an essential testing framework in many software
applications and software product lines (SPL) (e.g., [16], [17],
[18], [19], [20]). More recently, we have also discovered many
applications for CA such as optimization of dynamic voltage
scaling (DVS) in high performance processors [21], direct
current (DC) servomotor controller [22], tuning of functional
order PID controller [23], fault detection of software systems
[24], [2], [25], graphical user interface (GUI) testing [26].

In fact, CA has been used wider in software testing activities
for CIT. Bryce and Colbourn [27] introduced the prioritization
concept within the CA to prioritize the test suites for regression
testing. The key idea here is that the chance of repeated faults
is frequent as the produced software is developed or main-
tained. Developers found that it is better to keep the test suites
generated for the earlier version of the software and prioritize
them based on specific mechanism. Hence, prioritization in
this way increases the effectiveness of the test suites. Qu et
al. [28] applied prioritization within CA successfully on two
software subjects to examine the effectiveness of CA to find
faults in the regression testing process. The results of the
research showed that most of the faults can be found when
t = 2 and 3.

CA has also been used to find faults’ location in SUT within
an approach of testing called fault characterization or failure
diagnosis. Here, CIT is effective when the configuration space
of the system is large. It helps to fix the faults quickly and
saves a significant amount of time. Yilmaz et al.[29] applied
CA for fault characterization on a software called “Skoll”
that is used for distributed continuous quality assurance. The
research found that even low interaction strengths can detect
and localize faults effectively.

CIT is used widely with mutation analysis effectively. In
fact, mutation testing is used within other testing approached
as a powerful testing technique (see [30], [31]). Code-based
mutation testing is used during the debugging process to
evaluate fault detection capability of the test cases and thus
identify the quality of the generated test suites [30]. Follow-
ing this approach, few studies have used mutation testing
to assess the quality of the test cases generated by CIT
strategies (e.g., [32], [19], [18]). More recently, Belli et al.
[33] have demonstrated the usefulness and the position of
model-based mutation testing in the landscape of mutation
testing. Here, model-based mutation testing is following the
same concepts of traditional code-based mutation testing.
However, the mutants are affecting the input model of the
SUT. Contrary to those above-mentioned works in mutation
testing, in this research, we are also trying to investigate
the effectiveness of CIT using model-based mutation testing
as a framework. Here, using model-based mutation testing
concepts, we can know the quality of the used test cases
and thus investigate the effectiveness. The following sections
illustrate the experimental setup and the method of assessment.

IV. EXPERIMENTAL SETUP

As mentioned previously, we aim to introduce a new ap-
plication of CIT and know the effectiveness of combinatorial
interaction test suites. In doing so, we will be able to reach
our second aim to understand the effectiveness of t−way test
suites. In our experiments, we measured the effectiveness of
t−way combinatorial test suites for a defined business case,
which was reporting an issue in an issue-tracking system (i.e.,
SUT). We used the business cases to model the inputs of the
issue-tracking system. We then mutate those input models and
run the experiments mainly to detect defects in the SUT. To

7070

62

Fig. 1. Examples illustrating OA, CA, and MCA [2]

simulate the defects, we prepared ten instances of the SUT, to
which artificial defects were injected. We choose to use the
SUT for the software development case. Here, base on our
industrial experience, we manually mutate the inputs just like
the standard code mutation in the code-based mutation testing.
For each of these instances, we analyzed how effective are
the individual test cases concerning the ability to detect the
injected defects. The details of the experimental setup and the
mutation process are given in the following sub-sections.

A. Object of Experiment

As SUT, we have selected the open-source JTrac1 applica-
tion, that is written in J2EE. The JTrac is an issue tracking
system with configurable data fields and issues workflow. It
uses a relational database for data storage with standard HTML
and AJAX user interface. In our experiment, we focused on the
part of entering the issue and immediate follow-up processing
of the entered data. We enriched the data processing logic
in the JTrac by more complex verification of the issue data,
entered into the system.

We modeled an issue entry form for 9 fields of configura-
tion, which are subjects of our interest. In each of the fields, we
identified equivalence classes (ECs), as in a standard industrial
test design process. The configuration of the issue entry form
is presented in Table I.

Then, we defined several combinations of values, which are
not allowed in the issue tracking process. At this point, we
copied similar setup from a recent industrial project we have
been consulting. We extended that part of the JTrac which
is responsible for data verification by a set of conditions
ensuring these constraints. We extended the system by 26
conditions in total. Out of these, 16 conditions were guarding
particular combinations of 2 input fields, and 10 conditions
were guarding particular combinations of 3 input fields.

1JTrac Official Web Page, http://jtrac.info/

An example of the 2 input fields condition is: IF ((op-
erational system==iOS) AND (browse==Edge)) THEN the
combination is not valid.

An example of the 3 input fields condition is: IF
((issue severity==1) AND (issue priority==1) AND (is-
sue preliminary classification==usabiliy defect)) THEN the
combination is not valid.

This was the baseline SUT, which was considered as the
correct version. We used this baseline input also for imple-
mentation of the test oracle, determining the expected correct
results of the tests.

B. Model-based Mutation Testing Process

We used the input model described in Section IV-A within
a model-based mutation framework. Just like traditional code-
based mutation testing, here, we prepared ten instances of
baseline SUTs (mutated SUTs further on), to which we
inserted different sets of artificial defects by standard code
mutation techniques. We mutated the code affecting processing
of the issue data after its input to the system via the form for
entering issues. In this experiment, we focused on mutation
of conditions f the input models. More details about mutated
SUTs are given in Table II. It is worthy here to mention that
we are not dealing with the code of JTrac.

In Table II, Column MUT-ALL gives a total number of
mutated conditions in the SUT model. Column MUT-2 gives
the number of mutated conditions, where two variables con-
sidered for inputs to the decision, whereas column MUT-3
gives the number of mutated conditions, where three variables
considered for inputs to the decision. Moreover, columns
“VALUE”, “AND” and “NOT” are giving the numbers of
particular input mutation type, which was made in the SUT
input model. These input mutation types are explained in Table
III, using pseudo-code notations. Here, x stands for variable,
N and M for constants. The input elements presented in Table
III can be part of more complex decision expressions.

7171

63

TABLE I
CONFIGURATION OF ISSUE ENTRY FORM

Field Type Number of ECs
Issue name Short text 5
Issue description Long text 4
Issue severity List of values 5
Issue priority List of values 5
Operational system List of values 5
Browser List of values 6
Testing environment List of values 5
System List of values 7
Issue preliminary classification List of values 5

TABLE II
PROPERTIES OF MUTATED SUTS

Mutated SUT ID MUT-ALL MUT-2 MUT-3 VALUE AND NOT
1 1 0 1 0 0 1
2 1 0 1 1 0 0
3 1 0 1 1 0 0
4 2 0 2 2 0 0
5 3 1 2 3 0 0
6 4 1 3 2 2 0
7 5 2 3 3 2 0
8 6 2 4 5 0 1
9 7 3 4 3 0 4
10 8 4 4 3 1 4

TABLE III
INPUT MUTATION TYPES USED IN THE EXPERIMENTS

Mutation type Baseline code element Mutated code element Notes
VALUE (x==N) (x==M) N�=M

AND condition1 AND condition2 condition1 OR condition2 Alternatively, OR changed for AND
NOT condition NOT(condition) Alternatively remove NOT

To detect the defects caused by input mutations in the
particular SUT instance, we created Selenium WebDriver2

automated tests. The test scenario consisted of the following
steps: (1) login to the system, (2) select the project, (3)
go to the issue entry form, (4) enter the issue by prepared
testing data, (5) submit the issue, (6) test the verification
mechanism for the allowed issue data, (7) display the saved
issue to test if it was saved correctly. The sequences (3)-(7)
repeated for particular combinations of the test data, which
were parametrized in a data grid structure. The experimental
setup is outlined in the Fig. 2.

The test data (which were entered to the SUT during the
experiments) were generated by our strategy PSTG that is
developed recently. PSTG is a CIT strategy that uses Particle
Swarm Optimization (PSO) to generate the combinatorial
interaction test suite. Details about the PSTG test generation
tool can be found in [34], [35]. The strategy generates the
test suites by entering the specification of input models. We
prepared different sets of test data: starting from 2 − way,
where the test data combinations generated with full all pairs
criterion for the input values and t − way, where the test
data combinations were generated with full t−way criterion.

2http://www.seleniumhq.org/projects/webdriver/

Fig. 2. Experiment setup

The following section shows and discusses the results of the
evaluation of these test suites.

7272

64

V. RESULTS AND DISCUSSION

Using our PSTG tool, we have generated t−way test suites
starting from 2 − way to 6 − way. We have started by 48
different test cases in the 2−way test suite and 322 different
test cases in the 3 − way test suite. We used baseline SUT
(without inserted faults) to create a test oracle, determining
the correct expected results of individual test cases. These
expected results were added to the input data grid of the
automated tests exercising particular mutated SUTs. We run
each of the prepared test cases (TCs) in 2−way and 3−way
test suites for all 10 mutated SUTs instances. The results are
presented in Table IV.

In Table IV, DN denotes number of test cases that have
detected the defects caused by the mutated input lines; EFF
denotes percentage of test cases that have detected the defects
caused by the mutated input lines. For three mutated SUTs
(particularly 3,4 and 5), the defects were detected only when
using a 3 − way test cases. The input mutants which were
not detected by 2−way test suite, but where detected by the
3 − way test suite are specified in the Table V.

It is also important to know the effectiveness of each test
case in addition to the test suites. These individual effective-
ness results are presented in Fig. 3 for the 2 − way test suite
and Fig. 4 for the 3 − way test suite. In Fig. 3, the graph
displays the number of mutated SUTs, in which the individual
test case of the 2−way test suite discovered a defect caused
by a input mutation. By analogy, Fig. 4 displays this statistics
for the 3 − way test suite.

Fig. 5 presents the ratio of test cases detecting the input
mutation defects for the 2−way test suite. On the x− axis,
the number of mutated input lines in particular mutated SUTs
is displayed.

Then, Fig. 6 presents the ratio of test cases detecting the
input defects for the 3 − way test suite.

0%

5%

10%

15%

20%

25%

30%

35%

3-way test suite

No. of mutations in individual mutated SUT

Ra
tio

of
 d

et
ec

tio
n

Fig. 6. Ratio of test cases detecting the mutated input defects for the 3−way
test suite

It is worthy to mention that the other generated test suites
(i.e., 4−way to 6−way) may also detect faults in the program.
However, for this particular application, we can see from the
results that 3 − way test suites can detect all the mutants
successfully.

In addition to the effectiveness of the test suites as a
whole, another important observation can be drawn from the
results, which is the effectiveness of each test case. As can
be seen from Fig.5 and Fig. 6, the mutant detection ration
is not distributed uniformly among the test cases. Each test
case has a different capability of detection. This could be
beneficial in term of test case prioritization while accompanied
by regression testing. Here, we can rearrange the test cases in
the test suite in which those test cases with higher detection
ratio can be prioritized when running in the future.

In particular, 19 out of 48 test cases of the 2−way test suite
have not detected any defect in all of 10 mutated SUTs. This
means, 39,6% of 2−way test suite test cases have not detected
any defect in all of 10 mutated SUTs used in the experiment.
One test case of the 2 − way test suite has detected 1,176
defects in all of SUTs in average. For 3−way test suite, 130
out of 322 test cases have not detected any defect in all of
the mutated SUTs, which is 40,4% in ratio. One test case of
the 3 − way test suite has detected 1,230 defects in all of 10
SUTs in average.

When we consider these statistics as a certain measure of
test set efficiency, for 2-way and 3-way test suites this effi-
ciency is is practically comparable. From an overall economic
point of view, 2-way test set seems more efficient, taking
into account the total number of test cases in 2 − way and
3 − way test sets. Nevertheless, the significant difference is
more capability of 3 − way test set to detect all the inserted
defects; in our example 3 of the inserted defects were detected
by 3 − way test set only.

VI. THREATS TO VALIDITY

Like any other experimental and evaluation research, this
research has faced few threats to validity. We have tried to
eliminate the effect of those threats. However, some threats are
out of our control in research. The first threat is the generaliza-
tion and expansion of the results. For this experimental object
of this research, we have selected limited input elements for
mutation. There could be different elements of the input that
may take various types of mutant. In fact, this threat depends
on the aim of the experiment. Here our aim is not to evaluate
JTrac extensively, but we are using it to proof the effectiveness.

The second possible threat is the use of front-end testing and
model-based mutation testing to detect the defective behavior
of the SUT. Although it can be thought as a threat, we took
this approach to simulate real-life test cases.

Another threat is that the set of used mutated input types are
limited. Here, we tried to estimate the most likely developer’s
mistakes. It is hard to predict which defects are made by the
developers in the input line for the particular case. Quality
and consistency of the design documentation, seniority of the
development staff and coding standards have an impact on the
particular case.

The use of one generation could form a threat to validity. In
the literature, there are different approaches for constructing
combinatorial interaction test suites. Each approach may lead
to different effectiveness impact on the SUT. Here, in line with

7373

65

TABLE IV
TEST RESULTS

Mutated SUT ID DN for 2− way EFF for 2− way DN for 3− way EFF for 3− way

1 1 2,08% 3 0,93%
2 1 2,08% 2 0,62%
3 0 0,00% 1 0,31%
4 0 0,00% 3 0,93%
5 0 0,00% 6 1,86%
6 3 6,25% 35 10,87%
7 12 25,00% 84 26,09%
8 12 25,00% 91 28,26%
9 10 20,83% 70 21,74%

10 17 35,42% 101 31,37%

TABLE V
INPUT MUTANTS WHICH WERE NOT DETECTED BY 2− way TEST SUITE

Mutated
SUT ID

Mutation
ID Baseline input element Mutated input element

3 1

IF ((test environment==DEV) AND
(issue preliminary classification==performance defect)
AND (system==backoffice)) THEN the combination is not
valid

IF ((test environment==UAT1) AND
(issue preliminary classification==performance defect)
AND (system==backoffice)) THEN the combination is not
valid

4 1

IF ((test environment==DEV) AND
(issue preliminary classification==performance defect)
AND (system==backoffice)) THEN the combination is not
valid

IF ((test environment==UAT1) AND
(issue preliminary classification==performance defect)
AND (system==backoffice)) THEN the combination is not
valid

4 2
IF ((issue severity==2) AND (issue priority==2) AND
(issue preliminary classification==usability defect)) THEN
the combination is not valid

IF ((issue severity==3) AND (issue priority==2) AND
(issue preliminary classification==usability defect)) THEN
the combination is not valid

5 1 IF ((issue severity==1) AND ((issue priority==4) OR
(issue priority==5)) THEN the combination is not valid

IF ((issue severity==1) AND ((issue priority==5) OR
(issue priority==5)) THEN the combination is not valid

5 2

IF ((test environment==DEV) AND
(issue preliminary classification==performance defect)
AND (system==backoffice)) THEN the combination is not
valid

IF ((test environment==UAT1) AND
(issue preliminary classification==performance defect)
AND (system==backoffice)) THEN the combination is not
valid

5 3
IF ((issue severity==2) AND (issue priority==2) AND
(issue preliminary classification==usability defect)) THEN
the combination is not valid

IF ((issue severity==3) AND (issue priority==2) AND
(issue preliminary classification==usability defect)) THEN
the combination is not valid

Effectiveness of individual TCs in the 2-way test Suite

N
o.

 o
f S

U
T

in
st.

 th
at

 T
Cs

 d
isc

lo
se

d
a d

ef
ec

t

Fig. 3. Effectiveness of the individual test cases for the 2− way test suite

7474

66

Effectiveness of individual TCs in the 3-way test Suite

N
o.

 o
f S

U
T

in
st.

 th
at

 T
Cs

 d
isc

lo
se

d
a d

ef
ec

t

Fig. 4. Effectiveness of the individual test cases for the 3− way test suite

0%

5%

10%

15%

20%

25%

30%

35%

40%

2-way test suite

No. of mutations in individual mutated SUT

Ra
tio

of
 d

et
ec

tio
n

Fig. 5. Ratio of test cases detecting the mutated input defects for the 2−way
test suite

our aim, we are not showing the effectiveness of each CIT
strategy. However, we keen to demonstrate the effectiveness
of CIT within the model-based mutation testing for a new case
study. Here, in contrast to the traditional code-based mutation
testing, we can detect different input mutants by following the
model-based mutation testing process.

VII. CONCLUSION

In this paper, we have investigated a new case study of
CIT for model-based mutation testing. We have examined
different combinatorial interaction test suites on a well-known
established open source software. The experiments aimed to
find input model mutants that we injected into the SUT to
check the effectiveness of the test suites. In addition to the
critical application of CIT that can be seen in the paper, we
have also shown how to use CIT in the context of model-
based mutation testing as a variant of traditional code-based
mutation testing. We have also shown that pairwise testing is
not sufficient to detect all the input mutants for this case study.
The results revealed that 3 − way test suite is effective also
to detect some of those not detected faults by pairwise test
suites. This research is an active research project currently,
and we are trying to investigate more case studies with more
mutated inputs for CIT and its effectiveness in the future.
As part of our future research, we are also planning to
examine the effectiveness of different CIT strategies to study

the effect of test construction and parameter arrangements on
the effectiveness of the whole test suites.

REFERENCES

[1] R. N. Kacker, D. Richard Kuhn, Y. Lei, and J. F. Lawrence, “Combi-
natorial testing for software: An adaptation of design of experiments,”
Measurement, vol. 46, no. 9, pp. 3745–3752, 2013.

[2] B. S. Ahmed, T. S. Abdulsamad, and M. Y. Potrus, “Achievement
of minimized combinatorial test suite for configuration-aware software
functional testing using the cuckoo search algorithm,” Information and
Software Technology, vol. 66, no. 0, pp. 13–29, 2015.

[3] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The com-
binatorial design approach to automatic test generation,” IEEE Softw,
vol. 13, 1996.

[4] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 1–29, 2011.

[5] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “Ipog: a
general strategy for t-way software testing,” in 4th Annual IEEE Inter-
national Conference and Workshops on the Engineering of Computer-
Based Systems, pp. 549–556, IEEE Computer Society. 1253335 549-556.

[6] A. Hervieu, D. Marijan, A. Gotlieb, and B. Baudry, “Practical mini-
mization of pairwise-covering test configurations using constraint pro-
gramming,” Information and Software Technology, vol. 71, pp. 129–146,
2016.

[7] K. Z. Zamli, M. F. J. Klaib, M. I. Younis, N. A. M. Isa, and R. Abdullah,
“Design and implementation of a t-way test data generation strategy with
automated execution tool support,” Information Sciences, vol. 181, no. 9,
pp. 1741–1758, 2011.

[8] X. Yuan, M. B. Cohen, and A. M. Memon, “Gui interaction testing: in-
corporating event context,” IEEE Transactions on Software Engineering,
vol. 37, no. 4, pp. 559–574, 2011.

[9] C. S. Cheng, “Orthogonal arrays with variable numbers of symbols,”
The Annals of Statistics, vol. 8, no. 2, pp. 447–453, 1980.

[10] C. Colbourn, G. Kéri, P. R. Soriano, and J.-C. Schlage-Puchta, “Covering
and radius-covering arrays: Constructions and classification,” Discrete
Applied Mathematics, vol. 158, no. 11, pp. 1158–1180, 2010.

[11] A. Hartman, Software and Hardware Testing Using Combinatorial Cov-
ering Suites, vol. 34 of Graph Theory, Combinatorics and Algorithms.
Springer US, 2005.

[12] J. N. Cawse, Experimental design for combinatorial and high throughput
materials development. Wiley-Interscience, 2003.

[13] D. E. Shasha, A. Y. Kouranov, L. V. Lejay, M. F. Chou, and G. M.
Coruzzi, “Using combinatorial design to study regulation by multiple
input signals: A tool for parsimony in the post-genomics era,” Plant
Physiology, vol. 127, no. 4, pp. 1590–1594, 2001.

[14] D. S. Hoskins, C. J. Colbourn, and D. C. Montgomery, “Software per-
formance testing using covering arrays: Efficient screening designs with
categorical factors,” in Proceedings of the 5th International Workshop on
Software and Performance, WOSP ’05, (New York, NY, USA), pp. 131–
136, ACM, 2005.

[15] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 742–762, 2010.

7575

67

[16] C. J. Colbourn and D. W. McClary, “Locating and detecting arrays for
interaction faults,” Journal of Combinatorial Optimization, vol. 15, no. 1,
pp. 17–48, 2008.

[17] G. Fraser and A. Gargantini, “Generating minimal fault detecting test
suites for boolean expressions,” in Third International Conference on
Software Testing, Verification, and Validation Workshops, pp. 37–45,
2010.

[18] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of constraints: a
greedy approach,” IEEE Transactions on Software Engineering, vol. 34,
no. 5, pp. 633–650, 2008.

[19] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing,” in Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, (New York, NY, USA), pp. 26–
36, ACM, 2013.

[20] P. A. da Mota Silveira Neto, I. d. Carmo Machado, J. D. McGregor, E. S.
de Almeida, and S. R. de Lemos Meira, “A systematic mapping study of
software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407–423, 2011.

[21] D. R. Sulaiman and B. S. Ahmed, “Using the combinatorial optimization
approach for dvs in high performance processors,” in International
Conference on Technological Advances in Electrical Electronics and
Computer Engineering (TAEECE), pp. 105–109, 2013.

[22] M. A. Sahib, B. S. Ahmed, and M. Y. Potrus, “Application of com-
binatorial interaction design for dc servomotor pid controller tuning,”
Journal of Control Science and Engineering, vol. 2014, p. 7, 2014.

[23] B. S. Ahmed, M. A. Sahib, L. M. Gambardella, W. Afzal, and K. Z.
Zamli, “Optimum design of PIλ Dμ controller for an automatic voltage
regulator system using combinatorial test design,” PLOS ONE, vol. 11,
pp. 1–20, 11 2016.

[24] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, “Application of particle
swarm optimization to uniform and variable strength covering array
construction,” Applied Soft Computing, vol. 12, no. 4, p. 1330â1347,
2012.

[25] B. S. Ahmed and K. Z. Zamli, “A variable strength interaction test
suites generation strategy using particle swarm optimization,” Journal
of Systems and Software, vol. 84, no. 12, pp. 2171–2185, 2011.

[26] B. S. Ahmed, M. A. Sahib, and M. Y. Potrus, “Generating combinatorial
test cases using simplified swarm optimization (sso) algorithm for
automated gui functional testing,” Engineering Science and Technology,
an International Journal, vol. 17, no. 4, pp. 218–226, 2014.

[27] R. C. Bryce and C. J. Colbourn, “Test prioritization for pairwise
interaction coverage,” in Proceedings of the 1st International Workshop
on Advances in Model-based Testing, A-MOST ’05, (New York, NY,
USA), pp. 1–7, ACM, 2005.

[28] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction
regression testing: a study of test case generation and prioritization,” in
IEEE International Conference on Software Maintenance, ICSM 2007,
pp. 255–264, IEEE Computer Society, 2007.

[29] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient
fault characterization in complex configuration spaces,” ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 4, pp. 45–54, 2004. 1007519.

[30] J. Offutt, “A mutation carol: Past, present and future,” Information and
Software Technology, vol. 53, no. 10, pp. 1098 – 1107, 2011. Special
Section on Mutation Testing.

[31] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, pp. 649–678, Sept.
2011.

[32] D. R. Kuhn, D. R. Wallace, and J. Gallo, A.M., “Software fault
interactions and implications for software testing,” IEEE Transactions
on Software Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[33] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong,
“Model-based mutation testing – approach and case studies,” Science of
Computer Programming, vol. 120, pp. 25 – 48, 2016.

[34] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli, “Handling
constraints in combinatorial interaction testing in the presence of multi
objective particle swarm and multithreading,” Information and Software
Technology, vol. 86, pp. 20 – 36, 2017.

[35] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, “Constructing a t-way
interaction test suite using the particle swarm optimization approach,”
International Journal of Innovative Computing, Information and Control
(IJICIC), vol. 8, no. 1, pp. 431–452, 2012.

7676

68

10 Appendix D: Constrained Interaction Testing: A Sys-

tematic Literature Study

[A.4] Bestoun S. Ahmed, Kamal Z. Zamli, Wasif Afzal, and Miroslav Bures. Constrained
Interaction Testing: A Systematic Literature Study. IEEE Access, 5, pages 25706-
25730. 2017. (Q1, IF 3.24)

69

Received August 18, 2017, accepted October 15, 2017, date of publication November 9, 2017, date of current version December 5, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2771562

Constrained Interaction Testing: A Systematic
Literature Study
BESTOUN S. AHMED 1, KAMAL Z. ZAMLI2, (Member, IEEE),
WASIF AFZAL3, AND MIROSLAV BURES1
1Software Testing Intelligent Laboratory, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, 121
35 Prague, Czech Republic
2Faculty of Computer Systems and Software Engineering, University Malaysia Pahang, Gambang 26300, Malaysia
3School of Innovation, Design and Engineering, Mälardalen University, 72123 Västerås, Sweden

Corresponding author: Bestoun S. Ahmed (albeybes@fel.cvut.cz)

This work was supported in part by the Fundamental Research Grant: Reinforcement Learning Sine Cosine Based Strategy for
Combinatorial Test Suite from the Ministry of Higher Education Malaysia under Grant RDU170103.

ABSTRACT Interaction testing can be used to effectively detect faults that are otherwise difficult to find
by other testing techniques. However, in practice, the input configurations of software systems are subjected
to constraints, especially in the case of highly configurable systems. Handling constraints effectively and
efficiently in combinatorial interaction testing is a challenging problem. Nevertheless, researchers have
attacked this challenge through different techniques, andmuch progress has been achieved in the past decade.
Thus, it is useful to reflect on the current achievements and shortcomings and to identify potential areas
of improvements. This paper presents the first comprehensive and systematic literature study to structure
and categorize the research contributions for constrained interaction testing. Following the guidelines of
conducting a literature study, the relevant data are extracted from a set of 103 research papers belonging
to constrained interaction testing. The topics addressed in constrained interaction testing research are
classified into four categories of constraint test generation, application, generation and application, and
model validation studies. The papers within each of these categories are extensively reviewed. Apart
from answering several other research questions, this paper also discusses the applications of constrained
interaction testing in several domains, such as software product lines, fault detection and characterization,
test selection, security, and graphical user interface testing. This paper ends with a discussion of limitations,
challenges, and future work in the area.

INDEX TERMS Constrained interaction testing, constrained combinatorial testing, software testing, test
generation tools, test case design techniques.

I. INTRODUCTION
Software has become an innovative key for many applications
and methods in science and engineering. Ensuring the quality
and correctness of software is challenging because of the
different configurations and input domains of each program.
Ensuring the quality of software demands the exhaustive eval-
uation of all possible configurations and input interactions
against their expected outputs. However, such an exhaustive
testing effort is impractical because of time and resource
limitations. Thus, different sampling techniques have been
used to sample these input domains and configurations. The
use of these sampling techniques for black box system testing
is usually called as interaction testing, which can be used
to detect faults that are otherwise undetectable effectively.
Interaction testing has been given other alternative names

such as combinatorial testing (CT), combinatorial interaction
testing (CIT), and t−way, t−wise, or n−wise testing (where
t or n indicate the interaction strength). However, throughout
this paper, the term ‘‘interaction testing’’ is used as a rep-
resentative term as it is a popular name in existing software
testing literature.

Interaction testing has been used successfully for test-
ing different configurable software systems. Several review
and survey papers exist on the topic that covers developed
strategies and their applications (see e.g. [1]–[3]). Although
useful, interaction testing has suffered from a limitation of
efficiently handling constraints. The ability to handle con-
straints is a crucial aspect for the real-world applicability of
interaction testing techniques since most of the real-world
systems are subjected to constraints among input parameters

25706
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

70

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

or among particular system configurations. Hence, recent
times have seen a shift in interaction testing research that
concerns the handling of constraints and is typically called as
constrained interaction testing [4]. Adding this feature opens
up several new directions for research that promises to guide
further development of interaction testing [5]. However, there
exists no comprehensive and dedicated review paper in this
direction.

Although many interaction testing strategies have been
developed in the past, only a few of them can satisfy the
constraints in the final generated test suite. Handling con-
straints add extra complexity in designing efficient interac-
tion testing strategies. Hence, in the last decade, researchers
have looked into different ways of supporting the generation
of constrained interaction test suites. Besides, application
of constrained interaction testing on various software sys-
tems and the associated empirical evaluations have started
to surface. To this end, this paper provides a comprehensive
systematic literature study to structure and categorize the
available evidence for constrained interaction testing research
during the last decade. The goal of the study is to identify the
relevant papers, their results and the type of research such
that one can discuss future research opportunities in the area.
The study uses a systematic method to collect and analyze the
related research published during the last decade. In doing so,
methods and approaches for the generation as well as their
applications are addressed.

The remainder of this paper is organized as follows:
Section II presents the motivation and the overview of related
work for this study. Section III describes the methodology
of the literature study. Section IV presents the results and
outcomes of the study. Section V discusses the threats to
validity. Finally, Section VI concludes the work.

II. MOTIVATION AND RELATED WORK
Multiple factors motivated the decision to carry out a liter-
ature study in this paper. First, no existing paper aggregates
available research in constrained interaction testing (although
several review papers exist on interaction testing in gen-
eral). Second, constrained interaction testing is an upcoming
research direction in interaction testing [6]; so it is interesting
to investigate this topic. Third, a literature study paper is a
community service that potentially saves significant time for
interested researchers in getting to know about a research
topic such as constrained interaction testing.

Nie and Lueng [2] conducted one of the first com-
prehensive reviews covering combinatorial testing and its
applications. The study focuses on the basic concepts of
combinatorial testing, the detailed methods of combinatorial
test suite construction and the associated applications. The
article also reviews constrained interaction testing methods.
Kuliamin and Petukhov [7] also presented various methods
of constructing combinatorial interaction test suites. On sim-
ilar lines, Ahmed and Zamli [8] conducted a review study on
the application of interaction testing. This paper is a useful
complement to these existing review papers as it presents

a more complete and recent review of the field. The pre-
vious review papers are not exhaustive in its coverage of
constrained interaction testing. They are also not conducted
as systematic literature studies.

Focusing on search-based test generation, Afzal et al. [1]
and Ali et al. [9] have dedicated parts in their systematic
literature reviews for interaction testing. More recently,
Lopez-Herrejon et al. [3] published the first literature study
on interaction testing for software product lines (SPL). Here,
due to the presence of different constraints in SPL testing,
the study has included and reviewed the constrained inter-
action testing. However, the study has only discussed con-
straints from the SPL application point-of-view.

This study considers the above-mentioned review papers as
an excellent source of information since some of them include
papers on constrained interaction testing. Our study further
takes inspiration from other recently published systematic
literature studies, e.g., [10], [11].

III. METHOD
This section illustrates the method that this literature study
follows. This study follows the methodology recommenda-
tions given by [12]. The methodology has six stages. First
is the definition of the research questions. Second is to
undertake the search process, in which the search strategy
is established, and the primary research papers are selected.
The third stage is the selection and the quality assessment;
this stage acts as a screening stage in which irrelevant papers
are excluded based on the title, abstract, full-text reading and
quality assessments. Data extraction is the fourth stage to
extract data from the remaining papers. The fifth stage is the
analysis and the data classification to classify the extracted
information from the papers by tabulating and analyzing
them. The last stage is the validity evaluation in which the
threats to validity are evaluated and presented. For better
illustration and organization of these steps, they were further
classified into three main phases, as shown in Figure 1.

• Phase 1. Searching: The research questions that deter-
mine the focus of the study are defined in this phase.
Based on these research questions, the search string is
designed. The search string has undergone an experi-
mental refinement process to identify and return only
closely relevant papers.

• Phase 2. Filtering: Here, the relevant papers are
selected, and their quality is assessed. Irrelevant papers
are excluded based on the title, abstract, full-text reading
and quality assessments.

• Phase 3. Analysis: The relevant data answering the
research questions are extracted from the primary set of
papers in this phase (in the case of this study 103 papers).
The extracted data from the primary papers are classified
and analyzed to visualize and understand the outcome.
Here, Tables and Figures are used. Threats to validity are
also analyzed and presented in this phase with the aim
to disclose possible limitations of this study.

VOLUME 5, 2017 25707
71

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 1. The systematic literature detail steps.

The following sections illustrate different stages covering
the phases mentioned above that have been undertaken in
detail. Input and output of each step are depicted in Figure 1.
Some of the following subsections describe more steps
joined. For example, defining research questions needs the
research scope to be defined first. Hence, they are included
in one subsection. In addition, the design, selection, and
optimization of the search string are merged into one section.

A. RESEARCH QUESTIONS
As mentioned before, this study is a systematic literature
study, and the goal is to structure and categorize the available
evidence for constrained interaction testing research during
the last decade. A number of research questions (RQs) were
formulated to help achieve our goal:
• RQ1:What is the evolution in the number of published
studies over the last decade in constrained interaction
testing?

• RQ2: Which individuals, organizations, and countries
are active in conducting constrained interaction testing
research?

• RQ3: What topics/subjects have been addressed in the
constrained interaction testing research and what is their
distribution?

• RQ4: What are the existing strategies, tools, and tech-
niques that support the generation of constrained inter-
action test suites?

• RQ5: What kinds of benchmarks (industrial or other-
wise) are used to evaluate constrained interaction testing
techniques and what is their provenance?

• RQ6: What are the applications of constrained interac-
tion in software testing?

• RQ7:What are the current limitations and challenges in
constrained interaction test generation?

• RQ8: What are the possible directions for future
research?

B. SEARCH STRATEGY
Identifying the keywords for textual search is a challenging
task. Kitchenham and Charters [12] established the PICO

(Population, Intervention, Comparison, and Outcomes) cri-
teria to identify the keywords formally. ‘Population’ refers to
a role in software engineering, an application area or a disci-
pline in the field, while the ‘intervention’ refers to software
engineering tools, methodologies, procedures or strategies to
address a specific issue. ‘Comparison’ identifies the different
procedures or methods that have been used for comparison.
‘Outcomes’ deal with those keywords that are outcomes of
the research and development, which are essential for practi-
tioners such as improving performance or reliability.

Based on the research questions and the PICO guidelines,
the keywords were categorized into three sets. The first set
is related to the scoping the search for constrained interaction
testing, i.e., ‘‘constrained interaction testing’’ or ‘‘constrained
combinatorial interaction.’’ To make the search broader,
the second set of keywords is constructed to form terms and
strings related to the generation of constrained test suites such
as ‘‘strategy.’’ The third set is related to the application of
constrained interaction testing. These strings were combined
to form one string but with different trials. To combine the
search terms, Boolean AND is used, whereas Boolean OR is
used to join alternate terms.

A preliminary string was constructed and then it took sev-
eral trials to form the final search string (Set # 5 in Table 1).
These trials were needed mainly due to the close relationship
between combinatorial interaction testing and constrained
interaction testing. Since constrained interaction testing is the
scope of this paper, a search string is required that returns only
those combinatorial interaction strategies that support con-
straints. In doing so, these search stringswere evaluated based
on how much the returned results were related to the scope.
In order to make sure that the search string is not missing
out relevant papers, 20 ‘‘pilot’’ papers were selected, to make
sure that different changes to the search (when experimented
on IEEExplore and ScienceDirect indexing databases) are
always able to find these 20 core/pilot set of studies. Finally,
the string that is more related to the study area and can return
these studies was selected.

Table 1 shows the result of five trials of different search
strings. The first three sets of the search strings were excluded

25708 VOLUME 5, 2017
72

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 1. Search strings tries on the indexing data bases.

in the selection process since there were many irrelevant
results returned by them, even though they returned the pilot
papers also. The reason behind these results is the general
terms in the strings that led to return many irrelevant papers.
In addition, during the trials, it has been found that the
term ‘‘constraint’’ is used in different ways depending on
its situation in the sentences. To this end, three different
terms were used, (constraint OR constrained OR constraints),
which led to covering more papers. Additionally, it was also
found that these synonyms were used with different terms of
interaction testing. As a result, those terms were observed in
the literature and used in different ways (‘‘interaction testing’’
OR ‘‘combinatorial testing’’ OR ‘‘combinatorial interaction’’
OR ‘‘combinatorial test design’’ OR ‘‘covering array’’ OR
‘‘t-way testing”). To make sure that the scope was fully cov-
ered in the research questions, additional terms were added
such as (‘‘strategy,’’ ‘‘technique,’’ ‘‘method,’’ ‘‘approach’’
and ‘‘tool”).

The databases were selected based on the guidelines and
suggestions provided by [13] and [14]. Based on these guide-
lines, the following databases were selected:

• IEEE Xplore
• ScienceDirect
• ACM Digital Library
• Scopus
• SpringerLink

During searching, indexing, and sorting of a large number of
references, different duplicate references appeared due to the
slight differences in the reference indexing in the databases.
To manage the references and to remove duplicates, the well-
known reference management software EndNote X7 was
used. For more accuracy, Mendeley v1.16 reference manager
software was also used. As mentioned earlier, this is a litera-
ture study covering the last decade starting from 2005 as there
has been increasing research trends from that time. It should
be mentioned here that this study started in early 2016 and
finished early 2017. The papers from 2017 are not included

TABLE 2. Number of published research.

in this study. To figure out the number of published research
in this direction, Table 2 summarizes the number of research
papers published in the mentioned period for each considered
database.

C. PAPER SELECTION CRITERIA AND QUALITY
ASSURANCE
The papers were excluded or selected based on the title,
abstract and full-text reading. The quality of the papers was
also considered for the selection. To increase the reliability
of selection, this process was conducted by the first author
and reviewed again by other authors of the study. It should
be mentioned that some papers can be selected or excluded
based on the title and abstract. However, rest of them required
full-text reading for deciding on their selection. For better
understanding, the studies with the following criteria were
selected:

• Studies for interaction testing with the support of con-
straints.

• Studies dealing with the applications of constrained
interaction.

• Studies that are in the field of Software Engineer-
ing/Computer Science.

• Studies that are published online in the last decade (i.e.,
from 2005 when the first constraint-related paper got
published).

VOLUME 5, 2017 25709
73

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 2. Number of included papers in the selection and filtering process.

It is also worth mentioning here the excluding criteria for the
studies. Following the guidelines provided by [14], the pub-
lished studies were excluded based on the following criteria:
• Studies dealing with interaction testing but without the
support of constraints.

• Application of constrained interaction in fields other
than Software Engineering/Computer Science.

• Studies not published in the English language.
• Studies without full text.
• Books and gray literature.
• Studies from non-peer reviewed sources.

Applying these criteria helped to capture better the number
of papers that should be included in the study scope. As men-
tioned previously, many of these papers were duplicated, and
they were removed finally. For example, some of those pub-
lished papers in ScienceDirect were also indexed in Scopus
database. In fact, Scopus acted as a valuable resource for
double checking the results from other databases. Figure 2
shows these studies and the selection stages clearly.

As can be seen from Figure 2, to choose papers from a large
set given by the selected databases, four filtering stages were
applied. These stages have also been used in other literature
studies [10], [15]. First, the related papers were identified
in the selected databases (i.e., IEEE Xplore, ScienceDirect,
ACM Digital Library, Scopus, SpringerLink). As mentioned
previously, the outcome of this stage is 2,668 papers. It should
be mentioned here that different papers were shared between
these databases. Hence, ‘‘Filter 1’’ stage was performed in
which all the duplicated titles, proceeding abstracts, and Pow-
erPoint presentations were excluded. In the ‘‘Filter 2’’ stage,
the papers were analyzed by reading the titles, abstracts,
and if necessary the introduction sections of the papers. The
selected papers were based on the exclusion and inclusion
criteria provided earlier. In the ‘‘Filter 3’’ stage, the authors
read the full-text of the chosen papers. Here, another set of
papers was excluded due to multiple reasons. For example,
many conference papers described an idea for research but
do not include study results. In addition, the focus of some
published papers was not entirely in software engineering and
also not falling within the scope of the research questions.
Finally, a snowballing stage was conducted by checking the
references of the selected studies to not miss any relevant
papers. Here, 14 more papers were added as an outcome of
this stage. Hence, at the last stage, 103 papers were selected to
answer the research questions by extracting information from

TABLE 3. Data extraction template.

FIGURE 3. Publication per year.

them. AppendixA lists the studied papers. Appendix A shows
the references for these papers along with their full names and
the publication years.

D. DATA EXTRACTION AND ANALYSIS
This phase aims to extract data from the selected studies and
analyze them to answer the research questions. A spread-
sheet was created to retrieve the required data from these
identified studies. The template developed by [14] and [16]
was followed and adopted to construct the sheet. More fields
of data were also added to the table. Table 3 shows the
template that was used. General information about the paper
was recorded, including paper ID, publication title, publi-
cation year, authors’ names and countries, venue, and area

25710 VOLUME 5, 2017
74

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 4. Publication ratio and number categorized by source.

of research. More specific data was extracted by including
the research approach for the study, evaluation process, case
study, applied techniques and challenges addressed. The data
extraction process helped to understand each paper’s aim
better and to get answers to the posed research questions.
At the end of the process, the frequencies of papers were also
calculated.

Each paper has a table with the information specified
in Table 3. To extract and analyze the information for all
papers, a reliable method was followed. The information is
extracted first by the first author and then double checked by
the other authors separately. For better reliability, automatic
text analyzer also used to verify the obtained information.

IV. RESULTS
This section is dedicated to answering the research ques-
tions in detail. Each research question from section III-A is
addressed here individually. A short title is used for each
section that is extracted from the main research questions in
section III-A.

A. FREQUENCY OF PUBLICATIONS (RQ1)
The identified studies were analyzed over the last
decade (2005–2016) to know the frequency and evolution
of the number of publications. Figure 3 shows the results of
this analysis process. As mentioned earlier, 103 publications
were considered in which the average number of publications
per year is of 10 papers. The average number is influenced
strongly by the growth of publication numbers after 2009.

It should be mentioned here that the first model of con-
strained interaction for interaction testing purposes is pro-
posed in a Ph.D. thesis in 2004 by Cohen [17]. However,
this study did not appear in any database and was only
published on the author (and university) website. In 2005,
Hnich et al. [18] showed how to model handle constraints
in Covering Array (CA); however, they did not explicitly
address the constraints among the values of the input param-
eters, and they mention this as a problem to be solved in
the future. In 2006, Bryce and Colbourn [19] formalized the
constrained interaction testing with CA mathematical object,

while Hnich et al. [20] also defined and formalized the
constraint models for CA in the same year. In the same
time, Cohen et al. [21] tried to investigate the application of
constrained interaction testing for SPL testing.

The interest in constrained interaction testing moder-
ately increased between 2005–2007, whereas, a significant
increase of research can be observed in 2008 and beyond.
This increase in the publication number is an indication of the
increasing interest in researching constrained interaction test-
ing in the software engineering community. Another potential
reason behind this increase is a shift of constrained interaction
testing from theory to practice, with more and more papers
investigating the application of this testing technique in dif-
ferent case studies.

Regarding the type of the publication venue, Figure 4
shows this information. Majority of publications (around
70%) are conference publications, about 22% are journal pub-
lications, and around 8% are workshop publications. It should
be mentioned here that some conference publications are
ultimately published as book chapters; however, their original
venues, which are conferences, were considered.

Given these results, it is also important to know the popu-
lar peer-reviewed journal, conference and workshop venues
for constrained interaction testing. Figure 5 shows those
active peer-reviewed journals where relevant papers are pub-
lished. Journals names are given in abbreviations of Thomson
Reuters Science Citation Index1 due to their long names.
The full journal names corresponding to those abbrevia-
tions are given in Appendix B. Respectively, Figure 6 shows
active conferences involved in constrained interaction testing
research. The conference names are given in abbreviations,
and the full names can be found in Appendix C.

Figures 5 and 6 gives a clear picture of targeted venues for
publication by authors of the considered studies. Looking at
the journal publications specifically, it is clear that ‘‘Software
Quality,’’ ‘‘Information and Software Technology,’’ ‘‘IEEE
Transactions on Software Engineering,’’ and ‘‘Systems and
Software,’’ journals are the most active and top four journals

1https://apps.webofknowledge.com

VOLUME 5, 2017 25711
75

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 5. Number of Published Papers vs. Journal Name.

in terms of publication target (more than 52% of the journal
publications). Considering the conference publications, it be
can noted that many papers have been published in individual
conferences, however, ‘‘Software Testing, Verification and
Validation (ICST)’’ and ‘‘Software Product Lines (SPLC)’’
are the most targeted venues for the authors (more than 36%
of conference papers; 19 in ICST and 7 in SPLC). However,
if we consider those conferences which published more than
two papers, more than 68% of the papers were published
in annual conferences. The remainder of the papers were
published in 30 individual conferences (represented as others
in Figure 6).

B. ACTIVE INDIVIDUALS, ORGANIZATIONS AND
COUNTRIES (RQ2)
This research question aims to identify active researchers
publishing studies about constrained interaction testing.
A quick analysis reveals that many researchers are engaged
in researching constrained interaction testing. In fact, it is
clear that many authors were participating in a single
research paper. Most active researchers were designated as
those who author/co-author more than three research papers.
Such researchers are producing more than 83% (86/103)
of the publications. Figure 7 shows the ranking of these
researchers based on them being authors or co-authors of the
papers. From the ranking, it is clear that ‘‘Myra B. Cohen”,
‘‘Angelo Gargantini’’ and ‘‘Andrea Calvagna’’ are top three
researchers with 13, 10 and 6 published papers respectively.
These three authors participated in almost more than 28%
(29/103) of the total publications.

Table 4 shows the ranking of the organizations and active
research groups based on the published papers. The name
of the group, participating researchers, reference to the pub-
lished papers and the total number of papers is also pre-
sented in the table. The table complements the observations
from Figure 7. In addition to the organizational ranking,
the table also shows the collaboration among the authors.
From the analysis of the table, it is clear that the research

FIGURE 6. Amount of Published Papers vs. Conference Venues.

group from University of Nebraska - Lincoln (a collaboration
between ‘‘Myra B. Cohen’’ and ‘‘Matthew B. Dwyer”) is the
most active research group in constrained interaction testing.
In addition, that the group from Chinese Academy of Sci-
ences (a collaboration between Jian Zhang and Feifei Ma)
and the group from Technischen Universität Darmstadt
(a collaboration between Malte Lochau and Sebastian Oster)
are second active research groups since they are collaborating
with other researchers in publishing 7 papers for each group.
There are two active groups in the third rank. The group from
Università di Bergamo (a collaboration between ‘‘Angelo
Gargantini”, and ‘‘Paolo Vavassori”), and University of Cata-
nia (active author ‘‘Andrea Calvagna”) have participated in 6
published papers.

Another analysis can be drawn from the active countries in
published papers. Figure 8 shows the most active countries
in the publishing of constrained interaction testing papers.
The figure shows the participation of each country in pub-
lished papers based on the organizational affiliation of the
authors. It is clear that USA, Germany, and Italy are top three
countries in publications, with 28, 14, and 12 publications
respectively. For example, 13 papers out of those published

25712 VOLUME 5, 2017
76

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 7. Active researchers.

TABLE 4. Researchers and organizations involved in constrained interaction testing research.

from the USA comes from a collaboration between ‘‘Myra
B. Cohen’’ and ‘‘Matthew B. Dwyer”. Germany is the sec-
ond most active country in constrained interaction testing
publications. This comes from the collaboration of three
German universities with other groups. These organiza-
tions are, ‘‘Technischen Universität Darmstadt’’ (active
researchers: Malte Lochau and Sebastian Oster),

‘‘Technischen Universität Braunschweig’’ (active researcher:
Thomas Thüm) and the ‘‘University of Magdeburg’’ (active
researchers: Gunter Saake and Mustafa Al-Hajjaji).

Important observations can be made from the output of
this research question. Although the topic is important and
promising, few researchers participate in constrained interac-
tion testing publications. For instance, 31 active authors are

VOLUME 5, 2017 25713
77

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 8. Active countries.

TABLE 5. Distribution of papers by research type (high level classification).

participating in more than two research papers, and they are
responsible for more than 83% (86/103) of the publications.
In fact, many more authors are participating in combinatorial
interaction testing without constraint’s support.

C. DISTRIBUTION OF THE STUDIES AND TOPICS
ADDRESSED (RQ3)
Full-text of the considered papers was scanned carefully to
answer this research question. Different topics and subjects
have been addressed. Although the topics are broad in range,
this study distributed the topics into four main high-level cat-
egories. Within each category, many topics can be discussed.
Table 5 shows these four high-level categories and refers
to the papers in each category. Based on a careful analysis,
the studies are placed into the following categories:
• Constraint Test Generation Studies: Papers in this
category discuss the generation strategies, methods,
and approaches for constrained interaction testing. The
papers are addressing the problem of generation by using
different approaches including, exact methods, compu-
tational algorithms, meta-heuristic algorithms, and con-
straint solvers.

• Application Studies: Papers in this category consider
only the application of constrained interaction testing for
a specific domain of research (such as Graphical User
Interface (GUI) testing).

• Generation and Application Studies: Papers in this
category shows those studies that are considering

a combination of generation and application. Here,
the research papers are introducing a generation
approach for a specific application(s).

• Model Validation Studies: Papers in this category either
introduce models of constrained interaction testing, for-
malize the constrained interaction testing mathemati-
cally, or introducemodels of problems that can be solved
by constrained interaction testing.

Figure 9 shows the detail distribution of the papers accord-
ing to the classified topics. The following sub-sections illus-
trate these categories and the papers related to them in detail.

1) CONSTRAINT TEST GENERATION STUDIES
As can be seen from Table 5, 36 papers are proposing and
evaluating different generation strategies of constrained inter-
action test suites. In addition, there are also 21 papers propos-
ing customized generation strategies for specific applications.
Hence, in total, there are 57 papers containing generation
methods in some form. Here, it is essential to know the used
methods for solving and dealing with constraints and also the
generation strategies. In fact, the generation strategies will be
addressed in RQ4, while this section addresses the constraint
solving methods.

As can be seen from Figure 10, different methods have
been used to solve the constraints during the generation
of constrained interaction test suites. By analyzing those
57 papers, a classification for those constraint solving meth-
ods can be made. Out of those 57 papers, 43 papers (75.43%)

25714 VOLUME 5, 2017
78

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 9. Distribution of papers according to classification.

FIGURE 10. Constraint solving methods.

used a constraint solver package. Those constraint solvers are,
SAT, SMT, CSP, PBO and Clasp solvers. SAT solver has the
highest usage rate 69.7% (30/43) [5], [18], [20], [22]–[26],
[28], [30], [31], [34], [38], [40], [41], [44], [45], [56]–[59],
[65], [72], [73], [78], [79], [85], [95], [100], [113] then SMT
solver 13.9% (6/43) [33], [44], [51], [54]–[56], then CSP
solver 9.3% (4/43) [5], [42], [60], [99], and then PBO solver
4.6% (2/43) [37], [39]. Recently, one paper uses Clasp solver
also [36]. The use of SAT solver seems to attract researchers
because of its performance, accuracy, and simplicity for solv-
ing the constraints. Henard et al. [56] validated this result
recently by conducting a comparative study between SAT and
SMT solvers in case of flattening the CIT into a Boolean
model. The research found that the SAT solver can process
the flattening models faster than the SMT solver.

Another reported way of solving the constraints in the
literature is by excluding the constraints from the search
process. For instance, 4 papers [19], [42], [87], [98] of the
generation papers follow this method. The method removes
those tuples which are related to the constraints, in other
words, the meaningless tuples. In this way, there is no need
for a constraint solver. However, this method just considers
the exclusion of constraints rather than their inclusion. For
real applications, in some cases, there could be inclusion
constraints. For example, some input parameters might come
exclusively with a specific set of parameters.

Binary decision diagram [86], [115], [118] and graph
theory [27], [88], [89] methods are also used to deal with
the constraints. Within the considered papers for generation
approach, there are three papers for each of these meth-

VOLUME 5, 2017 25715
79

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 11. Application areas of constrained interaction testing.

ods. The binary decision diagram prevents the appearance
of constraints in the final test suite by considering some
form of cause-effect graph relationships. By considering this
relationship, the generation method prevents the generation
path from passing through those constraints. The graph theory
method follows the well-known graph algorithms like graph
coloring to generate test small test suites without violating the
specified constraints.

Constraint programming [61], [62], [81] and linear pro-
gramming [74] methods are also used rarely in the literature
to deal with the constraints in combinatorial interaction test-
ing. Constraint programming is mainly dedicated for solving
hard combinatorial problems. Not much different from this
definition, constraint programming is usedwithin constrained
interaction testing as an exact method to generate test suites
without violating the constraints. Although it can be usedwith
generation strategies in general, this method has been used
only with SPL testing. Linear programming is also used with
some similarities with this approach to solving the constraints
but follows certain mathematical models. In general, linear
programming is used with a mathematical model when the
inputs have a linear relationship. Lopez-Herrejon et al. [74]
followed this approach by using zero-onemathematical linear
program with a multi-objective algorithm to solve the con-
straint problem for SPL feature models. In fact, this approach
is difficult to follow for big and general constrained inter-
action testing strategies as it is a non-deterministic polyno-
mial (NP) hard problem [4], [121].

2) APPLICATION STUDIES
From the Table 5, it is clear that 37 published papers are
dealing with the application of constrained interaction testing
without addressing the details of the generation process. The
majority of these strategies used well-known and established
tools and algorithms for generating constrained test suites.

Those generation tools and algorithms are either adopted
from other studies or used without much focus on them in
the published studies due to the more significant focus on the
application itself. For generating the test suites, there is an
essential need to represent the system-under-test as amodel to
recognize the input parameters and constraints. These inputs
are then used to generate test cases. Figure 12 shows those
adopted methods in the application studies. Out of those
37 published papers in the application direction, eight papers
are using SAT solver directly to generate the test cases and
for solving the constraints. Eight papers used ACTS2 tool
for the generation since it is a well-established, efficient, and
an excellent performance tool. Specifically, those published
papers used the IPO-family algorithms inside the ACTS tool.

As can be seen from Figure 11, the applications are dis-
tributed into six main areas. Constrained interaction testing
is frequently used within five of those areas actively. Those
active areas (with the citations to them) are, SPL testing [27],
[41], [42], [44], [45], [47], [52], [57], [58], [62]–[64], [71],
[99], [101], [104], [109], [110], fault detection and charac-
terization [28], [29], [80], [95], [105], test selection [96],
[97], [107], [108], security [93], [102], and GUI testing [114].
The left-hand side of the graph shows the results of those
research papers which are presenting the application focus.
It should be mentioned here that the papers are showing
the results of the testing process without much detail about
the generation process. In fact, most of the research papers
use one or more generation tools either from their previous
research or other research. For instance, 15 research papers
show the use and the benefits of the constrained interaction
testing for the SPL. In total, 29 published papers are focusing
on the use of constrained interaction testing for SPL.

Fault detection and characterization is another active
research direction here. Fault detection has been examined

2http://csrc.nist.gov/groups/SNS/acts/index.html

25716 VOLUME 5, 2017
80

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 12. Adopted generation methods for applications.

in the literature with normal interaction testing without con-
straints.Within constrained interaction testing, fault detection
and characterization is used for different purposes. In fact,
there are five research papers published in this direction
without the generation details and two more papers with the
test generation details. In total, there are seven published
papers, but there are no frequent author names in them.

Another active research direction for application of con-
straint testing is the test selection direction. From Figure 11,
it is clear that in total there are four published papers here.
The test selection research originated from the normal com-
binatorial interaction testing. Again, there are no frequent
names in these publications. This direction of research seems
to catch less attraction by the researchers, but it still could be
a productive future research direction.

Constrained interaction testing has been used for test-
ing security issues. Security application is investigated first
for normal combinatorial interaction testing for few stud-
ies (e.g., [122], [123]). In case of constraints, so far, two stud-
ies investigated its use in security. Bozic et al. [93] assessed
the concept of constrained interaction for web security testing
and Bouquet et al. [102] assessed it with model-based testing.

Combinatorial interaction testing has been used effectively
to generate test cases for applications from the GUI point of
view. Here, the constrained interaction testing is used to solve
invalid test cases in the final generated test suite. In total, there
are three published papers in this direction.

In addition to those aforementioned frequent areas,
constrained interaction testing has been used in total
within 11 different studies to solve real-life problems. More
details on the above mentioned active applications and other
areas are given while answering RQ6 in subsection IV-F.

3) GENERATION AND APPLICATION STUDIES
Another category of research area within constrained inter-
action testing belongs to the ‘‘generation and application
studies.’’ As can be noted from Table 5, 24 published papers
are dealing with the application of constrained interaction

testing and also addressing the generation process. It is clear
from the right-hand side of Figure 11, there are still six
frequent main areas for research. The right-hand side of the
figure extends the left side by adding more papers to the
application categories.

More papers are dealing with the SPL application but
with more details about the generation of test cases. Here,
the papers considered the generation of test cases for the
SPL as a special case of constrained interaction testing due
to different constraints in the feature models used within
SPL. In addition, researchers tried to integrate the generation
algorithms with the testing tools. Some of those algorithms
were depending mainly on constraint solving solutions. For
example, Model-based Software Product Line Testing frame-
work (MoSo-PoLiTe) [66] uses CSP solver for solving the
constraints in the feature models of the SPLs. Other tools
deployed well-known algorithms for constrained interac-
tion testing to generate test cases for the SPLs. CITLAB
tool [52] deployed IPO-family algorithms that are available in
ACTS [91] tool to generate test cases for SPL. In fact, the pub-
lication in this direction aimed to increase the efficiency of the
generation algorithms. Other researchers used special algo-
rithms to reach this aim. For instance, Al-Hajjaji et al. [72]
proposes an incremental approach for product sampling for
pairwise interaction testing (called IncLing), which enables
developers to generate samples on demand in a step-wise
manner. Here, the performance of the generation algorithm
is also improved by this incremental approach since there is
no need to wait until the generation algorithm produces all the
configurations. Lopez-Herrejon et al. [75] proposed Parallel
Prioritized product line Genetic Solver (PPGS) algorithm, a
parallel genetic algorithm for the generation of prioritized
pairwise suites for SPLs. The study compared PPGS with the
greedy algorithm prioritized-ICPL and in most cases, PPGS
was found to be producing better results.

Marijan et al. [61] has also introduced an algorithm to
generate a minimal set of valid test cases for SPL that covers
2-wise feature interactions for a given time interval. Mainly,

VOLUME 5, 2017 25717
81

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

the algorithm is based on constraint solver and constraint
programming. The study identifies the generation of a min-
imal configuration set for SPL from the feature model as a
constraint optimization problem. The algorithm can capture
the relationships among the features in the input feature
model by a constraint model that identify these relationships
as constraints for the solvers. The algorithm then tries to
generate a set that covers the 2 − wise interactions of the
features and also satisfy the constraints.

4) MODEL VALIDATION STUDIES
Model validation studies form another category of published
research papers on constrained interaction testing. From
Table 5, it is clear that seven published papers ([21], [46],
[54], [55], [116]–[120]) address this issue for constrained
interaction testing. The papers in this category deal with input
models of an application under test. These models are then
used to generate test cases accordingly. The rationale behind
this research direction is the deployment obstacles to find the
correct set of parameters and values with the restrictions (i.e.,
constraints) among them for real-life applications.

Generally, in combinatorial interaction testing, a model
is composed of parameters and values for each of them.
Constrained interaction testing adds some complex entity to
the model validation process which is the constraint model
among the parameters. The test generation strategies start
from this model to construct the final test suite. Having a good
model for the system under test will improve the quality of the
produced test suites by the strategy and also it could help in
early defect discovery. The model will be more useful when
we want to validate the produced test suites and assess their
quality.

Calvagna and Gargantinia [55] presented a new approach
to construct constrained 2 − wise test suites. More parts
of the paper discuss the models of input domains and
how the constraints should be presented in the strategy.
The paper presented a model also to generate customized
test suites by exclusion and inclusion of ad-hoc combi-
nations of input parameters. The research also formal-
ized constrained interaction testing as a logic problem.
A model checker tool is presented in the paper to validate
the model. In line with the approach of the paper, it pre-
sented a prototype tool for implementation. In another paper
later, Calvagna and Gargantini [54] extended this approach to
include more formalization of the model with more extensive
evaluation process for the generation and validation process.

Segall et al. [118] then suggested a different approach to
handle the complex relationship models between the param-
eters. The research suggested two different constructionmod-
els. The first construction model is the type counter param-
eter, which is a special type of parameter that counts the
number of specific values appearance for each input parame-
ter in each test case. The second construction model is the
type value property, which specifies the number of prop-
erties related to each parameter and values. The research
showed that these two approaches will reduce the modeling

complexity needed significantly. The research validated the
two approaches on two real-life case studies. Although the
approach is new in this direction, significant experimental
results for validation could not be recognized.

Arcaini et al. [116] proposed a model validation approach
for the constrained interaction testing, focusing more on the
validation of the constraints rather than the interactions of
parameters. The approach checks the consistency of the con-
straint among the input parameters, to be sure that they are not
contradicted by each other, and hence the input parameters
and their values are necessary for the inclusion in the test
suite. This has been done by checking whether the produced
test suites are consistent with the provided requirements in
the beginning for the input parameters, values, and constraints
among them. The research also provides a technique to iden-
tify potential causes for any appeared error and how to fix
it. The research suggested four sets of checkpoints that each
constrained interaction test suite must have. Those check-
points are, the consistency of the constraints, the usefulness
of the parameters and values, the correctness of the final test
suite in term of constraints violation, and finally the impor-
tance of each test case in term of coverage. These checkpoints
were validated by the benchmarks available in the CITLAB
tool [49] and the constraints were validated with the help of
SMT solver.

Tzoref-Brill and Maoz [119] explore the evolution of
constrained interaction test space modeling. The research
showed that the Boolean semantics are inadequate for con-
strained interaction model evolution. The research extends
the Boolean semantics to a lattice-based semantics to provide
consistency of the interpretation for model changes. This has
been done via Galois connection to establish the connection
among the elements in an abstract domain. The research pro-
vides an extensive formulation of themodels without showing
any experimental results.

In contrast with the approachesmentioned above of general
model validation, Spichkova and Zamansky [120] proposes a
formal framework for model and validation framework of
constrained interaction testing at multiple levels of abstrac-
tion between elements. The framework is human-centric in
which it provides queries to testers for helping to analyze
and assess the quality of specific test plans, models, and
constraints to check if they are complete and valid. The study
presented a formal analysis of the framework without an
extensive experimental evaluation.

While the model validation frameworks and approaches
are feasible for constrained interaction testing,
Khalsa and Labiche [117] introduced the base choice crite-
ria to account for constraints. Specifically, the researchers
discovered two extensions for the base choice to address
complex constraints for complex systems. The criteria and
models were evaluated on industrial and academic cases
studies using different generated test suites by various test-
ing tools. The evaluation was based on cost and effective-
ness of the test suites in term of code coverage and fault
detection.

25718 VOLUME 5, 2017
82

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

D. EXISTING GENERATION STRATEGIES, TOOLS AND
TECHNIQUES (RQ4)
For the answering of RQ4, this study is interested in knowing
available generation strategies and tools. By answering this
question, it would also be possible to understand the fea-
tures and drawbacks of each strategy. The generation pro-
cess and the efficient algorithms of the strategies are also
essential to show here. It is clear from discussions men-
tioned above that each generation strategy of constrained
interaction testing needs a mechanism to deal with the con-
straints. In Section IV-C.1, it is illustrated that to solve the
constraints, the researchers usually either using a constraint
solver through constraint programming or they exclude the
constraints. They may also avoid the inclusion of constraints
by following a particular algorithm. Having discussed those
constraint issues, this Section is more about to know the algo-
rithms used to derive the interactions for the final constrained
interaction test suite.

There are many generation approaches for normal combi-
natorial interaction testing, with few of them supporting the
inclusion of constraints. From the examined papers, in gen-
eral, there are three approaches for the generation. The first
approach is to use a computational algorithm to construct and
optimize the test suites; the second approach is to use a meta-
heuristic algorithm to optimize the test suite. With these two
approaches, a constraint handling mechanism (explained in
Section IV-C.1) is used to handle the constraints in the final
test suite. The third approach is to use a constraint solver to
construct the final test suite directly without violating the con-
straints. The presented generation methods in the considered
studies are falling under one of these approaches.

Following the first approach, Yu et al. [91] presented
ACTS tool for generating different instances of combinatorial
interaction test suites including the support for constraint
handling. In fact, ACTS is a composition of many algo-
rithms, mainly the IPO-family algorithms like IPOG [124],
IPOG-D [125], and IPOG-F [126]. To handle the constraints,
the ACTS tool relies on the Choco3 solver. The tool can
handle large configurations with a large set of constraints
and large values of interaction strength, especially in the
command line script. As mentioned previously, the tool has
been used as a base for many applications in the literature.

Garvin et al. [25] followed the second approach and pre-
sented an improved implementation of the original simulated
annealing-based (SA) constrained test suite generator [26]
called CASA. The tool includes the original implementation
of the SA generator algorithm with some improvements.
The improvement is concentrated in the long run time for
highly configurable systems with large constraint support.
The research reformulated the search algorithm in the SA
to efficiently incorporate the constraints. The tool uses SAT
solver to handle the constraints. Through the evaluation pro-
cess in the study, the tools performwell for the 35 benchmarks
used. However, the tool becomes slow, and the performance

3http://www.choco-solver.org/

degrades as the configuration benchmarks become large and
it is not able to generate test cases for some complex config-
urations. In addition, it could be noted that the tool does not
scale well when the interaction strength grows. As mentioned
earlier, the tool has been used in other studies to investigate
the application of constrained interaction test suites for real-
world problems.

Remaining with the second approach, Kalaee and
Rafe [115] presented an algorithm to generate constrained
interaction test suites using the PSO algorithm. The con-
straints are handled by an ROBDD graph that helps to prevent
them appearing during the construction. In the same way,
Alsariera et al. [70] presented an algorithm to generate the test
suites using the Bat-inspired algorithm for SPL. The study
handled the constraints by excluding them from the final test
suite. Both studies need more extensive evaluation, and also
their performance is not comparable with ACTS and CASA.

Following the third approach, Banbara et al. [113] pre-
sented an algorithm and a method to generate constrained
interaction test suites using SAT solver directly. The study
proposed modern CDCL SAT solvers with two encodings,
one is order encoding while the other is a combination of
order encoding. The use of these encodings helps to enhance
the efficiency of generating better constrained interaction test
suites in terms of size. The evaluation experiment showed
this enhancement by generating better test suites sizes as
compared with well-known results in the literature.

E. USED BENCHMARKS FOR EVALUATION (RQ5)
By analyzing the considered papers for this study, it is clear
that different studies are using standard benchmarks or what
one can call ‘‘custom’’ benchmarks. As in the case of any
benchmark, the aim of using it is to evaluate a particular
approach within constrained interaction testing. In addition,
it is also used to compare different approaches. Mainly, there
are two types of benchmarks: benchmarks used to evaluate
constrained interaction test generation efficiency in general
and benchmarks used to evaluate the constrained interaction
test generation efficiency for SPL.

Cohen et al. [26] used a set of experiments that have been
used as a benchmark to evaluate a strategy for generating
constrained interaction testing suites. Later in her study [23],
Cohen has extended the set to includemore real-world config-
urations generated fromwell-known software systems. These
benchmarks are input models of Apache, GCC, Bugzilla,
SPIN simulator and SPIN verifier. Apache HTTP Server4

is an open source software system that works on different
platforms to feed web services. GCC5 is a multiple input
language infrastructure for supporting many programming
languages like C, C++, Java, and Fortran. Bugzilla6 is a defect
tracker fromMozilla that comes in open source to be used by
software developers. SPIN model checker [127] is a software

4httpd.apache.org/docs/2.2/mod/quickreference.html
5http://gcc.gnu.org/onlinedocs/gcc-4.1.1
6https://bugzilla.readthedocs.org/en/latest

VOLUME 5, 2017 25719
83

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

tool that is used as a case study for evaluation. In addition to
these systems, 30more system configurations were generated
from the above systems to be used as benchmarks. These
models are used as configuration benchmarks for 15 more
published papers (see [22], [24]–[26], [36], [37], [54], [55],
[68], [78], [79], [82], [85], [86], [90]). Other published papers
rely on custom benchmarks, which are normally random
configurations to simulate different scenarios of inputs.

Benchmarks for SPL test generation are commonly feature
model files like XML files and contain different features and
the constraints among them. These benchmarks may come
from industry partners that use SPLs or may come from previ-
ously constructed sets for experimental use. In general, many
papers use SPLOT,7 which is a website for SPL tools and
repositories. In fact, 8 of the considered studies in this paper
have been using the features models available on SPLOT for
benchmarks. These papers are: [44], [45], [58], [59], [62],
[75], [99], [101].

F. APPLICATIONS OF CONSTRAINED INTERACTION
TESTING (RQ6)
As can be seen from Figure 11, there are mainly five areas
in which the constrained interaction testing has frequently
been used. In addition, there are 11 different areas where the
constrained interaction testing has shown significant results
concerning the application. Hence, in total, there are 16 areas
of the application so far for constrained interaction testing.
The following subsections discuss these application areas
with more details.

1) SPL
SPL engineering is getting more attention recently due to
considerable industrial interest. The approach of SPL is to
establish a platform for common products in a product line
by identifying variability and commonality of features during
the development of individual products [128]. The testing
foundation in the SPL is to produce test assets that can be
reused by the products during the process of product line
development. The test case includes entities that form com-
mon parts related to a variety of possible products that must
be realized by the domain engineer. The testing process of
the SPL is getting more and more attention in the last decade.
Many approaches have been published for testing SPL. da
Mota Silveira Neto et al. [10] summarized different test-
ing approaches for SPL in an extensive systematic literature
study.

Due to huge features of modern products, it is very hard
to generate a complete and feasible test suite and configura-
tions. Here, combinatorial interaction testing can be a useful
approach to construct an optimal and practical configuration
for different potential products from a large set of features.
However, in reality, there are different constraints among
these features that tend to produce infeasible product config-
urations. Constrained interaction testing can be an excellent

7http://www.splot-research.org/

solution for this problem by generating an optimal configura-
tion set without violating the constraints among the features.

To apply the constrained interaction testing for SPL, a set
of activities need to be followed, as in the 29 papers identified
earlier in Figure 11. These activities are the feature model
adaptation including the constraints identification, interaction
testing adaptation, and configuration set generation.

Feature model adaptation and constraint identification
probably is the starting point in any approach. This step starts
by taking a standard input file that can also be represented in
a feature diagram. For instance, Perrouin et al. [57] formal-
ized different types of potential constraints from the feature
models. The study also proposed a toolset to generate the
final test suite for SPL. Calvagna et al. [52] presented a more
extensive and mature method to translate the feature models
into combinatorial interaction models in a framework named
CITLAB. The framework gives many advantages for a tool
to generate constrained interaction testing such as editing
facilities, seeding, and generation algorithms.

Interaction testing adaptation is an important stage to use
the constrained interaction testing for SPL. In fact, the major-
ity of the published papers are converting the feature models
to the CAmathematical object using the combinatorial model
obtained by conversion. As previously mentioned, the CA
consist of a set of t − wise sub-array, where t indicates
the strength of feature combination. The t is the number of
features that we want to test in combination.

Because the number of possible features to be combined
grows exponentially with the number of features designed for
a particular SPL, there is a need for an efficient and practical
strategy for t − wise generation to get the most optimum set
of combinations within an affordable testing cost. The adap-
tation takes care of four main entities for the CA which are
input parameters, number of features, the constraints among
the features and the combination strength. This stage is tied
to the configuration set generation stage because the CA is an
outcome of the stage. Here, different studies have proposed
various algorithms for the generation. Majority of the studies
used well-known algorithms for constrained interaction test-
ing like ACTS, CASA, IPO-family algorithms and AETG.
For example, Matnei Filho and Vergilio [101] developed a
strategy that relies on the AETG for multi-objective test data
generation for feature models’ mutation testing. Following
the same approach, Lamancha and Usaola [104] proposed a
strategy to generate 2−wise test products to cover all feature
in the feature model using AETG. Johansen et al. [66] pro-
posed a strategy for generating t − wise test suites for SPLs
from large feature models using CASA algorithms.

On the other hand, other studies proposed specialized tools
for generating constrained interaction test suites for SPL.
For example, PLEDGE is an editor and test generation tool
developed by Henard et al. [59] for SPL that rely on special
algorithms based on SAT solver. PACOGEN [61], [81] is
another tool for generating 2−wise test suites for SPL using
constraint programming. Researchers are also using heuristic
algorithms to generate optimum test suites. For example,

25720 VOLUME 5, 2017
84

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

Alsariera et al. [70] developed a strategy called SPLBA that
relies on the bat-inspired algorithm to generate constrained
interaction test suites. The strategy depends on constraint
exclusion to resolve the constraints among the feature mod-
els. Jia et al. [31] developed a Hyperheuristic strategy to gen-
erate test suites for SPL. The strategy depends on SAT solver
to resolve the constraints.

2) FAULT DETECTION AND CHARACTERIZATION
Here, the straight-forward aim is to construct test cases for
possible fault detection. The characterization process is used
within fault detection for drawing a better understanding of
the faults in the system and to enable fault avoidance in the
future development. Another purpose is to design test cases
for regression testing purposes. It could also be used for test
case prioritization. Fault detection has been examined in the
literature with normal interaction testing without constraints.
For example, Yilmaz et al. [129] uses normal t − wise
approach with covering array to generate test cases to detect
faults. The approach is integrated in the Skoll system [130] to
allow parallel execution of test cases across a grid of comput-
ers. The results of the executed test cases were returned to a
central server. The central server then classified the faults to
cover and uncover faults. This classification of faults during
the detection process helped the developers for providing
descriptions of failing configurations to find the causes of the
faults. In fact, this method can be used even with other test
generation methods; however, Yilmaz found that interaction
testing can produce better classification models.

3) TEST SELECTION
With the recent growing complexity of applications, it has
appeared that constrained interaction testing is a more practi-
cal testing approach. The research in this direction considers
the complex and large number of inputs and generating test
cases from these inputs. Taking which values of these inputs
and how to take them is a primary question here. Constrained
interaction testing can sample these inputs systematically
and take care of the constraints available between input val-
ues during the generation of the test cases. As previously
mentioned, the test selection applications are more assessed
within the normal combinatorial interaction testing. More
recently, the focus of research has also shifted to consider
the constraints among the input values due to the large and
complex input variables and complex structures (e.g., JSON)
in the real-world systems. For large scale modern software
systems like commercial applications, selecting input for a
test case is a difficult task due to the large input domain.
In this case, exhaustive testing usually is impractical and not
possible. One possible solution is to select one test design
method (like boundary-value analysis or cause and effect) to
select the inputs for test cases. However, these test design
methods are not applicable for every situation. Constrained
interaction testing could form another test design method that
is suitable for sampling test cases based on their interactions
among them while also considering the constraints among
them.

Zhong et al. [108] generated constrained interaction
test suites for large and complex software systems using
comKorat, which is a combination of Korat and ACTS algo-
rithms. Four systems were used to test the effectiveness
of the generated test suites. These four systems are large-
scale software systems developed at eBay and Yahoo!. The
approach detected almost 59 bugs that were not detected by
other approaches.

Nakornburi and Suwannasart [107] use a different
approach to select entities necessary for test generation like
the input parameters and values and then identify the con-
straints among them. The approach depends on the statisti-
cal profile of the software’s user for selecting the entities.
By selecting those entities, the study proposes a flow to
generate an optimal 2 − wise test suite for the software
under test by eliminating the unrealistic combinations from
the final test suite. However, the study did not mention the
algorithm for the generation, and the presented approach is
just for resolving constraints by excluding them. The study
shows preliminary evaluation results for small size software
under testing, and there is still need to show an extensive
experiment.

For the case of large and complex software under test,
Yilmaz [97] introduced a new combinatorial interaction
object called test case-aware covering array, which is a refine-
ment to the original covering array mathematical object used
traditionally with constrained interaction testing but with dif-
ferent coverage criteria of the interactions. The study selects
the input configurations of the software under test and con-
siders a set of test cases for these algorithms to satisfy all
test case-specific constraints. The study presented three algo-
rithms, two algorithms for test generation and minimization
and the other algorithm is dedicated to minimize the number
of test runs. The evaluation experiments used two highly
configurable software systems (Apache and MySQL). The
results of the evaluation showed that the test case-aware cov-
ering array is practically better than the traditional covering
array due to the consideration of handling real-world and test
case-specific constraints.

Finally, Kruse et al. [96] presented in a short paper an
approach to handle constraints in the numerical constrained
interaction test suites using the classification tree method.
The study showed a prototype for the implementation without
giving a complete description of the final solution.

4) SECURITY
As previously mentioned, two studies were focusing on the
application of constrained interactions for security testing.
These studies are by Bozic et al. [93] and Bouquet et al. [102].

Bozic et al. [93] assessed the concept of constrained inter-
action for web security testing using the IPO-family algo-
rithm. Specifically, the author evaluated IPOG and IPOG-F
algorithms which are available within the ACTS tool. The
algorithms generate test cases for exploring and detecting
injection attacks which are remote exploits that can lead
to security breaches. Specifically, the study focused on the

VOLUME 5, 2017 25721
85

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

cross-site scripting (XSS) vulnerabilities detection. Here, the
inputs have been modeled using XSS attack vectors’ mod-
eling method to identify the number of inputs. The model
is also used to identify the relations and constraints among
the input parameter values. Four test sets are generated using
ACTS tool, each two of these test sets were generated for
IPOG and IPOG-F respectively. Then, these generated test
suites are applied on a set of web applications that are used as
cases studies. These applications are included in Open Web
Application Security Project (OWASP)8 and in the Exploit
Database Project.9 In general, the results of the study indicate
that constrained interaction test suite can significantly reveal
security leaks in web applications. The consideration of con-
straints during the modeling process of attack grammars will
increase the number of test cases that can detect more vul-
nerabilities by examining more security breaches. The study
also investigated that the quality of the test suites generated
by IPOG-F is slightly better as compared to IPOG.

Bouquet et al. [102] discussed constrained interaction
testing with model-based testing used for security testing.
Although the paper is a general study without specific exper-
iments, many important issues are discussed regarding the
security test generation using model-based approach. In fact,
the paper illustrated and discussedmany cases studies in secu-
rity where constrained interaction testing could be applied.
Such case studies can very well form a stable base for exper-
imental investigations.

5) GUI TESTING
Constrained interaction testing principles have been used in
its simple form for GUI testing. Recently, the functional test-
ing of GUIs has shifted to an advanced process by using graph
theory and modeling concepts. The basic idea is to convert all
events and positions on the GUI into nodes and edges and
consider all possible sequences of events. This model has
been used later as an input to the generation algorithms to
generate test suites that simulate the event sequences. In fact,
this method is initiated and solved by normal combinatorial
interaction testing. However, with the normal combinatorial
interaction testing, it has appeared that many of the gen-
erated test cases were not valid since the sequences were
not visible for execution on the actual application’s GUI.
Huang et al. [32] recognized and illustrated this situation.
Huang et al. investigated that there are constraints for the
events and some events may not be available for execution.
The study proposes a method to repair the generated test
suites by avoiding those invalid combination of events and
generated new feasible test cases, which in other words,
solve the constraints. To evolve new test cases from the
repaired test suites, a genetic algorithm is used to utilized
event flow graph (EFG) for generating new test cases. The
approach is tested using different synthetic programs that
contain different GUIs with different constraints among the

8https://www.owasp.org/index.php/OWASP
9https://www.exploit-db.com/

events. Although the use of EFG has been investigated in
other research, it is not complete, and there is a need for
manual verification in different cases.

Go et al. [106] introduced a different approach to apply
2 − wise constrained interaction testing to GUI testing by
analyzing system specifications. The analysis process of the
specification will identify the class partitions of the input data
to be tested. Here, they categorized the constraints into data,
semantic rules, and GUI constraints. The data constraints
are identified from the system inputs; semantic rules con-
straints are identified from system specification documents;
while the GUI constraints can be collected from initial GUI
requirements. The constraints have been solved by using con-
ventional equivalent class partitioning without utilizing any
constraint solvers. Here, the study did notmention the 2−wise
test suite generation algorithm since the application used is
not complex, and the test suite can be generated even by
conventional methods. The study evaluated the approach on a
real-world problem. The approach showed significant results
concerning fault detection as compared to the conventional
random testing approach.

Finally, Bauersfeld et al. [114], tried to complement and
build the approach started by Huang et al. [32] for identifying
and generating test sequences for applications with GUI. The
study treated the test sequence generation of GUIs as an
optimization problem and employed ant colony optimiza-
tion (ACO) algorithm to solve it optimally. The study tries
to avoid the limitations of EFG use by using a new metric
called MCT (Maximum Call Tree) and avoids the inclusion
of those invalid interactions from the beginning thus prevent-
ing repairing process of the test suites later. The approach
is tested using an implemented Java SWT environment for
application testing. A graphical editor is used to test the
effectiveness of the approach. The study showed that the
approach can generate better sequences as compared with
the random approach. The study claimed that the approach
is better than the use of EFG; however, there is no evidence
for this claim.

6) OTHER APPLICATIONS
In addition to the applications mentioned above of con-
strained interaction testing, other applications have been
referred to in one published paper. As in the case of above
applications, the test cases were generated either using well-
known tools or by developing specific algorithms for the
generation. In fact, the application domains are broad in
range.

For instance, Sherwood [92] assessed the application
of constrained interaction testing for embedded functions
and anticipated benefits of programming languages. Here,
PHP language is used for its flexibility and prevalence.
An individual model is employed in the study to iden-
tify and validate the constraints and generate test cases.
In the same way, Salecker and Glesner [112] applied a
similar approach for grammar-based test selection and
generation.

25722 VOLUME 5, 2017
86

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

Li et al. [94] applied the constrained interaction testing
to big data applications. Here, two real-world big data ETL
applications are used. The ETL (Extract, Transform, and
Load) applications are common type applications in big data
employed by the developers to report and analyze data by
writing scripts in Hive, SQL, or Pig. To generate the test
cases for the SUT from the input domain models, the study
used ACTS tool. The study proved the effectiveness of the
constrained interaction testing by using a minimized sizes of
the test suites but detecting all the faults found in the original
data source. Fischer et al. [73] performed an empirical case
study to explore the application of constrained interaction
testing. Seven Java and C programs are used as subjects of the
case study in which they composed over nine million lines of
codes in total. SAT solver is used to generate and resolve the
constraints in the test suites.

Palacios et al. [98] addressed the use of constrained inter-
action testing for testing Service Level Agreements (SLAs).
In this study, the classical combinatorial interaction testing
has been combined with the Classification Tree Method to
generate test suites and resolve input constraints. For this
generation process, the study presented an automated tool
called SLACT (SLA Combinatorial Testing) that has been
applied successfully to an eHealth case study.

Arrieta et al. [100] used constrained interaction testing to
generate configurations for cyber-physical systems (CPSs).
CPSs are systems to integrate physical processes with digital
technologies. In the study, simulation-based test cases were
generated to test different configurations of CPSs. To resolve
the constraints, SAT solver is used with other approaches
for the generation to form a tool called ASTERYSCO. The
tools are used successfully with a cases study for configurable
Unmanned Aerial Vehicle.

Calvagna et al. [30] assessed the application of constrained
interaction testing in the context of random and combina-
torial effectiveness. The study uses this approach to know
the differences between random and combinatorial concern-
ing effectiveness for conformance testing. Here, the con-
formance testing used to verify components of Java Virtual
Machine (JVM). To generate test cases model checking is
applied to the considered specification.

Zhong et al. [108] applied constrained interaction testing
on four large-scale software applications. The software sys-
tems were developed by eBay and Yahoo companies. To gen-
erate the test cases, the study presented a newly developed
tool called comKorat which is an integration between Korat
and ACTS generation tools. By applying the test suites gen-
erated by comKorat, more faults were detected in the SUT.
Specifically, 59 new faults were detected while other test
suites did not detect them.

In another study, Grieskamp et al. [33] investigated
and proved the application of constrained interaction test-
ing for path coverage of software systems. To generate
the test suites, the study used SMT solver. The solver is
also sued to resolve the constants among the paths in the
software.

Finally, Kalaee and Rafe [115] used the graph theory and
Particle Swarm Optimization (PSO) to generate constrained
interaction test suites. The developed generation algorithm is
applied to a case study for a boiler system.

G. CURRENT LIMITATIONS AND CHALLENGES (RQ7)
Fundamentally, the limitations and challenges in the appli-
cation of constrained interaction test generation in practice
related to four main factors: the parameters (P), the values (v),
the interaction strength (t) as well as the constraints (C).

In line with the advancement of new technologies such
as the Internet of Things, big data analytic as well as cloud
computing, the intertwined dependencies and constraints
between components and their sub-systems can be massive.
To put this issue into perspective, Microsoft Windows source
code was merely around 4.5 million LOC in 1993. In 2003,
after ten years, Microsoft Windows source code increased
to over 50 million LOC [131], a tremendous increase. Here,
the growth of parameters (P) and the values (v) and the con-
straints (C) can be problematic (although such effect many be
controllable as far as (t) is concerned as empirical evidence
suggest that most faults are detectable at t = 6) [132]–[134]).

Two potential stumbling blocks can be attributed to the
above issues. Firstly, as the parameters (P), values (v) and
constraints (C) increase, the coverage of tuples for consid-
eration also increases tremendously. Putting constraints (C)
aside for simplicity, consider a scenario when P = 1000,
v = 5 and t = 2. Here, the search space for exhaustive testing
is 51000 and the search tuple is equal to 1.(

p
t

)
vt =

p!
t!(p− t)

vt =
1000!

2!(1000− 2)
52 (1)

Similarly, when v is large (even with small P and t), the
search space can also be large. Consider another scenario
when v = 1000, P = 2, and t = 2. In this case, the search
space for exhaustive testing is 10005 and the search tuple is
equal to 2(

p
t

)
vt =

p!
t!(p− t)

vt =
2!

2!(2− 2)
10002 (2)

Here, if both P and v are large so do the required
search space and the required tuples (even if t is bounded
at t = 6). To this end, no known strategy can handle both large
parameters (P) and large values (v) with rich constraints (C).
Currently, there is a limit on the size of the search space as
well as the number of tuples to be processed owing to limited
hardware and computational resources, rendering the need for
much research as far as scalability is concerned. Concerning
SPL as a special case of constrained interaction testing, while
the parameter (P) can be large with rich constraints (C), the
values (v) are always limited to two Boolean (true or false).

The second stumbling block relates to the process of find-
ing and specifying constraints for large parameters and val-
ues. The use of feature diagram and constraints solver appears
widespread for SPL; however, such an approach has not been
sufficiently adopted for the general constrained interaction

VOLUME 5, 2017 25723
87

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 6. List of studied papers.

25724 VOLUME 5, 2017
88

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 6. (Continued.) List of studied papers.

testing. If general constrained interaction testing is to be
adopted for large parameters (P) and large values (v) with
rich constraints (C), existing strategies need to integrate and
embed constraints solver (or constraints programming) as
part of their implementations.

H. POSSIBLE RESEARCH DIRECTIONS FOR FUTURE (RQ8)
Constrained interaction testing can be formulated as an opti-
mization problem, resulting in the adoption of meta-heuristic
based strategies in the literature. Meta-heuristic based strate-
gies offer superior solutions (i.e., concerning test suite size)
compared to existing approaches (i.e., owing to the systematic
exploration and exploitation of the search space). Although
useful, much-existing meta-heuristic based strategies have

explored single meta-heuristic algorithm. As such, the explo-
ration and exploitation of existing strategies have been lim-
ited based on the (local and global) search operators derived
from a particular meta-heuristic algorithm. In this case,
choosing a proper combination of search operators (termed
as hybridization) can be the key to achieving good perfor-
mance (as hybridization can capitalize on the strengths and
address the deficiencies of each algorithm collectively and
synergistically).

Hyper-heuristics have recently received considerable
attention to addressing some of the hybridization as men-
tioned earlier issues [135], [136]. Specifically, hyper-
heuristic represents an approach of using (meta)-heuristics to
choose (meta)-heuristics to solve the optimization problem

VOLUME 5, 2017 25725
89

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 7. List of active journals with abbreviations.

in hand. Unlike traditional meta-heuristics, which directly
operates on the solution space, hyper-heuristics offer flexible
integration and adaptive manipulation of the complete (low-
level) meta-heuristics or merely partial adoption of a par-
ticular meta-heuristic search operator through non-domain
feedback. In this manner, the hyper-heuristic can evolve its
heuristic selection and acceptance mechanism in the search
for a high-quality solution.

Apart from adopting hybridization with hyper-heuristic,
the integration with machine learning appears to be a viable
approach to improve the state-of-the-art of existing meta-
heuristic algorithms for constrained interaction testing [137].
Machine learning relates to the study of fundamental laws
that govern the computer learning process (i.e., concerning
how to build systems that can automatically learn from expe-
rience). Machine learning techniques can be classified into
three types: supervised, unsupervised, and reinforcement.
Supervised learning involves learning the direct functional
input-output mapping based on some set of training data and
being able to perform a prediction on new data (e.g., deep
learning approaches). Unlike supervised learning, unsuper-
vised learning does not require precise training data. Specif-
ically, unsupervised learning involves learning by drawing
inferences (e.g., clustering) on the input datasets. Reinforce-
ment learning relates to learning that allowsmapping between
states and actions to maximize reward signal by experimental
discovery. This type of learning differs from supervised learn-
ing by the fact that it relies upon punish and reward mecha-
nism and never corrects pairs of input-output data (even when
dealing with sub-optimal responses).

To maximize the effectiveness of the fault finding effi-
ciency, the constrained interaction testing can also be made
as a multi-objective problem. Apart from avoiding forbidden
tuples and maximizing the tuples coverage to obtain the
most minimum test suite size, one possibility is to include
minimizing the similarity among the test cases within the test
suite. Here, the effectiveness of similarity distance metrics
such as Euclidean distance, Hamming distance, Manhattan
distance, Cosine similarity, Jaccard index and its variants can
be investigated further. With a more diverse set of test cases,
the fault detection rate may increase but potentially at the

expense of a slight increase of test suite size. Additionally,
from a different perspective, the same approach of using
similarity metrics can also be used to prioritize existing test
suite.

Finally, to leverage on the need for supporting large param-
eters (P), values (v), with rich constraints (C), there is a
need to explore the new hybrid strategy based on cloud-based
service-oriented architecture. In this manner, the user can
exploit the computing power of the cloud to generate the
constrained test suite. Additionally, the user can also explore
the generation of constrained test suite as a service without
having to purchase the actual tool.

V. THREATS TO VALIDITY
Like any other literature study, this study has threats to its
validity. Many threats were eliminated by following well-
known recommendations and advice on conducting literature
studies.

First, as can be seen in the paper, several search strings
were tried to assure maximum coverage of related papers.
Although most of the related works have been selected here,
100% coverage of the papers cannot be guaranteed. There
could be some uncovered papers by the search string; how-
ever, to overcome this threat a pilot search for several papers
and also snowball sampling search was conducted.

Second, systematic literature studies could suffer from
single-author bias during data extraction. To eliminate this
threat, a double-checking and reviewing process by all
authors individually were conducted. Besides, automatic
mining and extraction tools were also tried in the spreadsheet
to verify the results of the data extraction process.

Third, several papers during the study were excluded.
The selection criteria are discussed explicitly in SectionIII-
C. Some studies may also get excluded due to the scope
of the paper itself. This study is dedicated to combinato-
rial interaction testing with constraints. Hence, those papers
that cover combinatorial interaction testingwithout constraint
support are excluded. The rationale behind this selection is
that several studies cover these papers (see [2], [7], [138]).
In addition, the constraint support in combinatorial testing

25726 VOLUME 5, 2017
90

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 8. List of active conferences with abbreviations.

was covered because it is an important aspect for the practical
application of combinatorial interaction testing. The papers
not published electronically were excluded; however, any
contribution in the area of constrained interaction testing that
is not published electronically is not expected.

VI. CONCLUSION
In this paper, an extensive literature study of 103 research
papers published on constrained interaction testing between
2005 and 2016 is presented. In the study, the selected
papers were analyzed from different perspectives based on
a set of research questions. The results indicate that there
is an increasing trend to address constrained interactions
for the testing purpose. There is a mix of contributions in
conferences, workshops, and journals with the majority of
papers being published in conferences. The active authors and
research groups in the field are further highlighted. Based
on the analysis, the contributions in constrained interaction
testing are grouped into four categories of constrained test
generation studies, application studies, generation and appli-
cation studies and model validation studies. The study found
that to solve constraints, the researchers usually either use
a constraint solver or exclude the constraints. The study
further showed that the applications of constrained interac-
tion testing are within software product lines, fault detection
and characterization, test selection, security and GUI testing,
among others. The study ends with a discussion of limita-
tions, challenges, and areas for future research for constrained
interaction testing.

APPENDIX A
See Table 6.

APPENDIX B
See Table 7.

APPENDIX C
See Table 8.

REFERENCES
[1] W. Afzal, R. Torkar, and R. Feldt, ‘‘A systematic review of search-based

testing for non-functional system properties,’’ Inf. Softw. Technol., vol. 51,
no. 6, pp. 957–976, 2009.

[2] C. Nie and H. Leung, ‘‘A survey of combinatorial testing,’’ ACMComput.
Surv., vol. 43, no. 2, pp. 1–29, 2011.

[3] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, ‘‘A first
systematic mapping study on combinatorial interaction testing for soft-
ware product lines,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verification
Validation Workshops (ICSTW), Apr. 2015, pp. 1–10.

[4] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli, ‘‘Han-
dling constraints in combinatorial interaction testing in the presence of
multi objective particle swarm and multithreading,’’ Inf. Softw. Technol.,
vol. 86, pp. 20–36, Jun. 2017.

[5] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, ‘‘Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault detec-
tion,’’ IEEE Trans. Softw. Eng., vol. 41, no. 9, pp. 901–924, Sep. 2015.

[6] J. Petke, ‘‘Constraints: The future of combinatorial interaction testing,’’
in Proc. IEEE/ACM 8th Int. Workshop Search-Based Softw. Test. (SBST),
May 2015, pp. 17–18.

[7] V. Kuliamin and A. Petukhov, ‘‘A survey of methods for constructing
covering arrays,’’ Programm. Comput. Softw., vol. 37, no. 3, pp. 121–146,
2011.

[8] B. S. Ahmed and K. Z. Zamli, ‘‘A review of covering arrays and
their application to software testing,’’ J. Comput. Sci., vol. 7, no. 9,
pp. 1375–1385, 2011.

[9] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
‘‘A systematic review of the application and empirical investigation of
search-based test case generation,’’ IEEE Trans. Softw. Eng., vol. 36,
no. 6, pp. 742–762, Nov. 2010.

[10] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, ‘‘A systematic mapping
study of software product lines testing,’’ Inf. Softw. Technol., vol. 53, no. 5,
pp. 407–423, 2011.

[11] S. Zein, N. Salleh, and J. Grundy, ‘‘A systematic mapping study of mobile
application testing techniques,’’ J. Syst. Softw., vol. 117, pp. 334–356,
Jul. 2016.

[12] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Keele, U.K.,
Tech. Rep. EBSE-2007-01, 2007.

[13] T. Dyba, T. Dingsoyr, and G. K. Hanssen, ‘‘Applying systematic reviews
to diverse study types: An experience report,’’ in Proc. 1st Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), 2007, pp. 225–234.

[14] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, 2015.

[15] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola,
F. Shull, and C. Seaman, ‘‘Identification and management of techni-
cal debt: A systematic mapping study,’’ Inf. Softw. Technol., vol. 70,
pp. 100–121, Feb. 2016.

[16] C. V. C. de Magalhães, F. Q. B. da Silva, R. E. S. Santos, and
M. Suassuna, ‘‘Investigations about replication of empirical studies in
software engineering: A systematic mapping study,’’ Inf. Softw. Technol.,
vol. 64, pp. 76–101, Aug. 2015.

[17] M. B. Cohen, ‘‘Designing test suites for software interaction testing,’’
Ph.D. dissertation, Dept. Comput. Sci., Univ. Auckland, Auckland,
New Zealand, 2004.

[18] B. Hnich, S. Prestwich, and E. Selensky, Constraint-Based Approaches
to the Covering Test Problem. Berlin, Germany: Springer, 2005,
pp. 172–186.

[19] R. C. Bryce and C. J. Colbourn, ‘‘Prioritized interaction testing for pair-
wise coverage with seeding and constraints,’’ Inf. Softw. Technol., vol. 48,
no. 10, pp. 960–970, 2006.

VOLUME 5, 2017 25727
91

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

[20] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith, ‘‘Constraint
models for the covering test problem,’’ Constraints, vol. 11, no. 2,
pp. 199–219, 2006.

[21] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Coverage and adequacy in
software product line testing,’’ in Proc. ACM, 2006, pp. 53–63.

[22] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Exploiting constraint solving
history to construct interaction test suites,’’ in Proc. Test., Acad. Ind.
Conf. Pract. Res. Techn.-MUTATION (TAICPART-MUTATION), 2007,
pp. 121–132.

[23] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Constructing interaction
test suites for highly-configurable systems in the presence of con-
straints: A greedy approach,’’ IEEE Trans. Softw. Eng., vol. 34, no. 5,
pp. 633–650, Sep. 2008.

[24] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, ‘‘An improved meta-
heuristic search for constrained interaction testing,’’ in Proc. 1st Int.
Symp. Search Based Softw. Eng., 2009, pp. 13–22.

[25] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, ‘‘Evaluating improvements
to a meta-heuristic search for constrained interaction testing,’’ Empirical
Softw. Eng., vol. 16, no. 1, pp. 61–102, 2011.

[26] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Interaction testing of highly-
configurable systems in the presence of constraints,’’ in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA), 2007, pp. 129–139.

[27] I. Cabral, M. B. Cohen, and G. Rothermel, ‘‘Improving the testing and
testability of software product lines,’’ in Proc. 14th Int. Conf. Softw.
Product Lines, Going Beyond (SPLC), 2010, pp. 241–255.

[28] S. Fouché, M. B. Cohen, and A. Porter, ‘‘Incremental covering array
failure characterization in large configuration spaces,’’ in Proc. 18th Int.
Symp. Softw. Test. Anal. (ISSTA), 2009, pp. 177–188.

[29] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, ‘‘Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing,’’ in Proc. 9th Joint Meet. Found. Softw. Eng. (ESEC/FSE), 2013,
pp. 26–36.

[30] A. Calvagna, A. Fornaia, and E. Tramontana, ‘‘Random versus combi-
natorial effectiveness in software conformance testing: A case study,’’ in
Proc. 30th Annu. ACMSymp. Appl. Comput. (SAC), 2015, pp. 1797–1802.

[31] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, ‘‘Learning combinatorial
interaction test generation strategies using hyperheuristic search,’’ in
Proc. Learn. Combinat. Interact. Test Generat. Strategies Using Hyper-
heuristic Search, 2015, pp. 540–550.

[32] S. Huang, M. B. Cohen, and A. M. Memon, ‘‘Repairing gui test suites
using a genetic algorithm,’’ in Proc. 3rd IEEE Int. Conf. Softw. Test.,
Verification Validation, Apr. 2010, pp. 245–254.

[33] W. Grieskamp, X. Qu, X. Wei, N. Kicillof, and M. B. Cohen, Interac-
tion Coverage Meets Path Coverage by SMT Constraint Solving. Berlin,
Germany: Springer, 2009, pp. 97–112.

[34] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, ‘‘TCA: An effi-
cient two-mode meta-heuristic algorithm for combinatorial test genera-
tion (T),’’ in Proc. 30th IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE),
Nov. 2015, pp. 494–505.

[35] Y. Zhao, Z. Zhang, J. Yan, and J. Zhang, ‘‘Cascade: A test generation
tool for combinatorial testing,’’ in Proc. IEEE 6th Int. Conf. Softw. Test.,
Verification Validation Workshops, Mar. 2013, pp. 267–270.

[36] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, ‘‘Generating combinatorial
test suite using combinatorial optimization,’’ J. Syst. Softw., vol. 98,
pp. 191–207, Dec. 2014.

[37] H. Liu, F. Ma, and J. Zhang, Generating Covering Arrays With
Pseudo-Boolean Constraint Solving and Balancing Heuristic. Cham,
Switzerland: Springer, 2016, pp. 262–270.

[38] F. Ma and J. Zhang, Finding Orthogonal Arrays Using Satisfiabil-
ity Checkers and Symmetry Breaking Constraints. Berlin, Germany:
Springer, 2008, pp. 247–259.

[39] J. Zhang, F. Ma, and Z. Zhang, Faulty Interaction Identification Via
Constraint Solving and Optimization. Berlin, Germany: Springer, 2012,
pp. 186–199.

[40] F. Ma, ‘‘Constraint solving techniques for software testing and analysis,’’
in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng. (ICSE), vol. 2. May 2010,
pp. 417–420.

[41] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake, ‘‘Effec-
tive product-line testing using similarity-based product prioritization,’’
in Software & Systems Modeling. Berlin, Germany: Springer, 2016,
pp. 1–23.

[42] M. Lochau, S. Oster, U. Goltz, and A. Schürr, ‘‘Model-based pairwise
testing for feature interaction coverage in software product line engineer-
ing,’’ Softw. Quality J., vol. 20, no. 3, pp. 567–604, 2012.

[43] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake,
‘‘Similarity-based prioritization in software product-line testing,’’ in
Proc. 18th Int. Softw. Product Line Conf. (SPLC), vol. 1. 2014,
pp. 197–206.

[44] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. le Traon, ‘‘Pair-
wise testing for software product lines: Comparison of two approaches,’’
Softw. Quality J., vol. 20, no. 3, pp. 605–643, 2012.

[45] S. Oster, F. Markert, and P. Ritter, Automated Incremental Pairwise
Testing of Software Product Lines. Berlin, Germany: Springer, 2010,
pp. 196–210.

[46] H. Cichos, S. Oster, M. Lochau, and A. Schürr, Model-Based Coverage-
Driven Test Suite Generation for Software Product Lines. Berlin,
Germany: Springer, 2011, pp. 425–439.

[47] S. Oster, M. Zink, M. Lochau, and M. Grechanik, Pairwise Feature-
Interaction Testing for SPLs: Potentials and Limitations. Munich,
Germany: ACM, 2011.

[48] A. Gargantini and P. Vavassori, ‘‘CITLAB: A laboratory for combi-
natorial interaction testing,’’ in Proc. IEEE 5th Int. Conf. Softw. Test.,
Verification Validation, Apr. 2012, pp. 559–568.

[49] A. Calvagna, A. Gargantini, and P. Vavassori, ‘‘Combinatorial interaction
testing with citlab,’’ in Proc. IEEE 6th Int. Conf. Softw. Test., Verification
Validation, Apr. 2013, pp. 376–382.

[50] A. Gargantini and P. Vavassori, Efficient Combinatorial Test Generation
Based on Multivalued Decision Diagrams. Cham, Switzerland: Springer,
2014, pp. 220–235.

[51] A. Calvagna and A. Gargantini, Combining Satisfiability Solving and
Heuristics to Constrained Combinatorial Interaction Testing. Berlin,
Germany: Springer, 2009, pp. 27–42.

[52] A. Calvagna, A. Gargantini, and P. Vavassori, ‘‘Combinatorial testing for
feature models using CitLab,’’ in Proc. IEEE 6th Int. Conf. Softw. Test.,
Verification Validation Workshops, Mar. 2013, pp. 338–347.

[53] A. Gargantini and G. Fraser, ‘‘Generating minimal fault detecting test
suites for general Boolean specifications,’’ Inf. Softw. Technol., vol. 53,
no. 11, pp. 1263–1273, 2011.

[54] A. Calvagna and A. Gargantini, ‘‘A formal logic approach to constrained
combinatorial testing,’’ J. Automated Reason., vol. 45, no. 4, pp. 331–358,
2010.

[55] A. Calvagna andA.Gargantini, ‘‘A logic-based approach to combinatorial
testing with constraints,’’ inProc. 2nd Int. Conf. Tests Proofs (TAP), 2008,
pp. 66–83.

[56] C. Henard, M. Papadakis, and Y. L. Traon, ‘‘Flattening or not of the com-
binatorial interaction testing models?’’ in Proc. IEEE 8th Int. Conf. Softw.
Test., Verification Validation Workshops (ICSTW), Apr. 2015, pp. 1–4.

[57] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. le Traon, ‘‘Automated
and scalable T-wise test case generation strategies for software product
lines,’’ in Proc. 3rd Int. Conf. Softw. Test., Verification Validation (ICST),
Paris, France, Apr. 2010, pp. 459–468.

[58] C. Henard, M. Papadakis, and Y. Le Traon, Mutation-Based Generation
of Software Product Line Test Configurations. Cham: Springer, 2014,
pp. 92–106.

[59] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
‘‘PLEDGE: A product line editor and test generation tool,’’ in Proc.
17th Int. Softw. Product Line Conf. Co-Located Workshops (SPLC), 2013,
pp. 126–129.

[60] S. Sen, S. Di Alesio, D. Marijan, and A. Sarkar, ‘‘Evaluating reconfigu-
ration impact in self-adaptive systems—An approach based on combina-
torial interaction testing,’’ in Proc. 41st Euromicro Conf. Softw. Eng. Adv.
Appl., 2015, pp. 250–254.

[61] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, ‘‘Practical pairwise
testing for software product lines,’’ in Proc. 17th Int. Softw. Product Line
Conf. (SPLC), 2013, pp. 227–235.

[62] A. Hervieu, B. Baudry, and A. Gotlieb, ‘‘PACOGEN: Automatic genera-
tion of pairwise test configurations from feature models,’’ in Proc. IEEE
22nd Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2011, pp. 120–129.

[63] M. F. Johansen, Ø.Y.Haugen, F. Fleurey, A.G. Eldegard, and T. Syversen,
Generating Better Partial Covering Arrays by Modeling Weights on Sub-
Product Lines. Berlin, Germany: Springer, 2012, pp. 269–284.

[64] M. F. Johansen, Ø. Y. Haugen, F. Fleurey, E. Carlson, J. Endresen, and
T. Wien, A Technique for Agile and Automatic Interaction Testing for
Product Lines. Berlin, Germany: Springer, 2012, pp. 39–54.

[65] M. F. Johansen, Ø. Y. Haugen, and F. Fleurey, Properties of Realistic
Feature Models Make Combinatorial Testing of Product Lines Feasible.
Berlin, Germany: Springer, 2011, pp. 638–652.

25728 VOLUME 5, 2017
92

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

[66] M. F. Johansen, Ø. Y. Haugen, and F. Fleurey, ‘‘An algorithm for generat-
ing T-wise covering arrays from large feature models,’’ in Proc. 16th Int.
Softw. Product Line Conf. (SPLC), vol. 1. 2012, pp. 46–55.

[67] R. R. Othman and K. Z. Zamli, ‘‘Input-input relationship constraints in
T-way testing,’’ in Proc. IEEE Symp. Ind. Electron. Appl., Sep. 2011,
pp. 527–531.

[68] A. R. A. Alsewari and K. Z. Zamli, ‘‘Design and implementation of
a harmony-search-based variable-strength T-way testing strategy with
constraints support,’’ Inf. Softw. Technol., vol. 54, no. 6, pp. 553–568,
2012.

[69] A. A. Al-Sewari and K. Z. Zamli,Constraints Dependent T-Way Test Suite
Generation Using Harmony Search Strategy. Berlin, Germany: Springer,
2012, pp. 1–11.

[70] Y. A. Alsariera, M. A. Majid, and K. Z. Zamli, ‘‘SPLBA: An interaction
strategy for testing software product lines using the bat-inspired algo-
rithm,’’ in Proc. 4th Int. Conf. Softw. Eng. Comput. Syst. (ICSECS), 2015,
pp. 148–153.

[71] X. Devroey, G. Perrouin, A. Legay, M. Cordy, P.-Y. Schobbens, and
P. Heymans,Coverage Criteria for Behavioural Testing of Software Prod-
uct Lines. Berlin, Germany: Springer, 2014, pp. 336–350.

[72] M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake, ‘‘IncLing:
Efficient product-line testing using incremental pairwise sampling,’’
in Proc. ACM SIGPLAN Int. Conf. Generat. Programm., Concepts
Exper. (GPCE), 2016, pp. 144–155.

[73] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed,
‘‘A source level empirical study of features and their interactions in
variable software,’’ in Proc. IEEE 16th Int. Workshop Conf. Source Code
Anal. Manipulation (SCAM), Oct. 2016, pp. 197–206.

[74] R. E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba,
‘‘Multi-objective optimal test suite computation for software product line
pairwise testing,’’ in Proc. ICSM, 2013, pp. 404–407.

[75] R. E. Lopez-Herrejon, J. J. Ferrer, F. Chicano, E. N. Haslinger, A. Egyed,
and E. Alba, ‘‘A parallel evolutionary algorithm for prioritized pairwise
testing of software product lines,’’ inProc. Annu. Conf. Genet. Evol. Com-
put. (GECCO), 2014, pp. 1255–1262.

[76] W.-T. Tsai, C. J. Colbourn, J. Luo, G. Qi, Q. Li, and X. Bai, ‘‘Test
algebra for combinatorial testing,’’ in Proc. 8th Int. Workshop Autom.
Softw. Test (AST), 2013, pp. 19–25.

[77] C. J. Colbourn and D. W. McClary, ‘‘Locating and detecting arrays for
interaction faults,’’ J. Combinat. Optim., vol. 15, no. 1, pp. 17–48, 2008.

[78] A. Yamada, T. Kitamura, C. Artho, E. H. Choi, Y. Oiwa, and A. Biere,
‘‘Optimization of combinatorial testing by incremental sat solving,’’ in
Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation (ICST),
Apr. 2015, pp. 1–10.

[79] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi, ‘‘Greedy
combinatorial test case generation using unsatisfiable cores,’’ in Proc.
31st IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), Sep. 2016,
pp. 614–624.

[80] E.-H. Choi, S. Kawabata, O. Mizuno, C. Artho, and T. Kitamura,
‘‘Test effectiveness evaluation of prioritized combinatorial testing:
A case study,’’ in Proc. IEEE Int. Conf. Softw. Quality, Rel. Secur. (QRS),
Aug. 2016, pp. 61–68.

[81] A. Hervieu, D. Marijan, A. Gotlieb, and B. Baudry, ‘‘Practical minimiza-
tion of pairwise-covering test configurations using constraint program-
ming,’’ Inf. Softw. Technol., vol. 71, pp. 129–146, Mar. 2016.

[82] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, ‘‘Con-
straint handling in combinatorial test generation using forbidden tuples,’’
in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation
Workshops (ICSTW), Apr. 2015, pp. 1–9.

[83] P. M. Kruse, ‘‘Test oracles and test script generation in combinatorial
testing,’’ in Proc. IEEE 9th Int. Conf. Softw. Test., Verification Validation
Workshops (ICSTW), Apr. 2016, pp. 75–82.

[84] S. Nakornburi and T. Suwannasart, ‘‘A tool for constrained pairwise
test case generation using statistical user profile based prioritization,’’ in
Proc. 13th Int. Joint Conf. Comput. Sci. Softw. Eng. (JCSSE), Jul. 2016,
pp. 1–6.

[85] J. Yuan, C. Jiang, and Z. Jiang, ‘‘Improved extremal optimization for con-
strained pairwise testing,’’ in Proc. Int. Conf. Res. Challenges Comput.
Sci., 2009, pp. 108–111.

[86] E. Salecker, R. Reicherdt, and S. Glesner, ‘‘Calculating prioritized inter-
action test sets with constraints using binary decision diagrams,’’ in
Proc. IEEE 4th Int. Conf. Softw. Test., Verification Validation Work-
shops (ICSTW), Mar. 2011, pp. 278–285.

[87] B. P. Lamancha, M. Polo, and M. Piattini, ‘‘PROW: A pairwise algorithm
with constraints, order and weight,’’ J. Syst. Softw., vol. 99, pp. 1–19,
Jan. 2015.

[88] S. Hallé, E. La Chance, and S. Gaboury, Graph Methods for Gener-
ating Test Cases With Universal and Existential Constraints. Cham,
Switzerland: Springer, 2015, pp. 55–70.

[89] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, ‘‘Covering arrays
avoiding forbidden edges,’’ in Proc. Int. Conf. Combinat. Optim. Appl.,
2009, pp. 298–308.

[90] Y. Sheng, C. Wei, G. Wang, S. Jiang, and Y. Chen, ‘‘Constraint test cases
generation based on particle swarm optimization,’’ in Proc. 22nd ISSAT
Int. Conf. Rel. Quality Design, 2016, pp. 329–333.

[91] R. N. Kacker, D. R. Kuhn, Y. Lei, and J. F. Lawrence, ‘‘Combinatorial
testing for software: An adaptation of design of experiments,’’ Measure-
ment, vol. 46, no. 9, pp. 3745–3752, 2013.

[92] G. B. Sherwood, ‘‘Embedded functions in combinatorial test designs,’’
in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation Work-
shops (ICSTW), Apr. 2015, pp. 1–10.

[93] J. Bozic, B. Garn, D. E. Simos, and F. Wotawa, ‘‘Evaluation of the
IPO-family algorithms for test case generation in Web security testing,’’
in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation Work-
shops (ICSTW), Apr. 2015, pp. 1–10.

[94] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, ‘‘Applying combinatorial
test data generation to big data applications,’’ in Proc. 31st IEEE/ACM
Int. Conf. Autom. Softw. Eng., Aug. 2016, pp. 637–647.

[95] G. Fraser and A. Gargantini, ‘‘Generating minimal fault detecting test
suites for Boolean expressions,’’ in Proc. 3rd Int. Conf. Softw. Test.,
Verification, Validation Workshops, 2010, pp. 37–45.

[96] P. M. Kruse, J. Bauer, and J. Wegener, ‘‘Numerical constraints for com-
binatorial interaction testing,’’ in Proc. IEEE 5th Int. Conf. Softw. Test.,
Verification Validation, Apr. 2012, pp. 758–763.

[97] C. Yilmaz, ‘‘Test case-aware combinatorial interaction testing,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 5, pp. 684–706, May 2013.

[98] M. Palacios, J. García-Fanjul, J. Tuya, and G. Spanoudakis, ‘‘Automatic
test case generation for ws-agreements using combinatorial testing,’’
Comput. Standards Inter., vol. 38, pp. 84–100, Feb. 2015.

[99] J. A. Galindo, H. Turner, D. Benavides, and J.White, ‘‘Testing variability-
intensive systems using automated analysis: An application to Android,’’
Softw. Quality J., vol. 24, no. 2, pp. 365–405, 2016.

[100] A. Arrieta, G. Sagardui, L. Etxeberria, and J. Zander, ‘‘Automatic gener-
ation of test system instances for configurable cyber-physical systems,’’
Softw. Quality J., vol. 25, no. 3, pp. 1041–1083, 2016.

[101] R. A. M. Filho and S. R. Vergilio, ‘‘A multi-objective test data generation
approach for mutation testing of feature models,’’ J. Softw. Eng. Res.
Develop., vol. 4, no. 1, p. 4, 2016.

[102] F. Bouquet, F. Peureux, and F. Ambert, Model-Based Testing for Func-
tional and Security Test Generation. Cham, Switzerland: Springer, 2014,
pp. 1–33.

[103] H. Zhong, L. Zhang, and S. Khurshid, The comKorat Tool: Unified Com-
binatorial and Constraint-Based Generation of Structurally Complex
Tests. Cham, Germany: Springer, 2016, pp. 107–113.

[104] B. P. Lamancha andM. P. Usaola, Testing Product Generation in Software
Product Lines Using Pairwise for Features Coverage. Berlin, Germany:
Springer, 2010.

[105] Y. Li, Z.-A. Sun, and J.-Y. Fang, ‘‘Generating an automated test suite by
variable strength combinatorial testing for Web services,’’ J. Comput. Inf.
Technol., vol. 24, no. 3, pp. 271–282, 2016.

[106] K. Go, S. Kang, J. Baik, and M. Kim, ‘‘Pairwise testing for systems
with data derived from real-valued variable inputs,’’ Softw.-Pract. Exper.,
vol. 46, no. 3, pp. 381–403, 2016.

[107] S. Nakornburi and T. Suwannasart, ‘‘Constrained pairwise test case gen-
eration approach based on statistical user profile,’’ in Proc. Lect. Notes
Eng. Comput. Sci., vol. 1. 2016, pp. 445–448.

[108] H. Zhong, L. Zhang, and S. Khurshid, ‘‘Combinatorial generation of
structurally complex test inputs for commercial software applications,’’
in Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 2016, pp. 981–986.

[109] C. H. P. Kim, D. Batory, and S. Khurshid, ‘‘Eliminating products to test
in a software product line,’’ in Proc. IEEE/ACM Int. Conf. Autom. Softw.
Eng. (ASE), 2010, pp. 139–142.

[110] C. H. P. Kim, D. S. Batory, and S. Khurshid, ‘‘Reducing combinatorics
in testing product lines,’’ in Proc. 10th Int. Conf. Aspect-Oriented Softw.
Develop. (AOSD), 2011, pp. 57–68.

VOLUME 5, 2017 25729
93

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

[111] R. Gao, L. Hu, W. E. Wong, H. L. Lu, and S. K. Huang, ‘‘Effective test
generation for combinatorial decision coverage,’’ in Proc. IEEE Int. Conf.
Softw. Quality, Rel. Secur. Companion (QRS-C), Aug. 2016, pp. 47–54.

[112] E. Salecker and S. Glesner, ‘‘Combinatorial interaction testing for test
selection in grammar-based testing,’’ in Proc. IEEE 5th Int. Conf. Softw.
Test., Verification Validation (ICST), Apr. 2012, pp. 610–619.

[113] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue, Generating Com-
binatorial Test Cases by Efficient SAT Encodings Suitable for CDCL SAT
Solvers. Berlin, Germany: Springer, 2010, pp. 112–126.

[114] S. Bauersfeld, S. Wappler, and J. Wegener, A Metaheuristic Approach to
Test Sequence Generation for Applications With a GUI. Berlin, Germany:
Springer, 2011, pp. 173–187.

[115] A. Kalaee andV. Rafe, ‘‘An optimal solution for test case generation using
ROBDD graph and PSO algorithm,’’Quality Rel. Eng. Int., vol. 32, no. 7,
pp. 2263–2279, 2016.

[116] P. Arcaini, A. Gargantini, and P. Vavassori, ‘‘Validation of models and
tests for constrained combinatorial interaction testing,’’ in Proc. IEEE
7th Int. Conf. Softw. Test., Verification Validation Workshops, Mar. 2014,
pp. 98–107.

[117] S. K. Khalsa and Y. Labiche, ‘‘An extension of category partition testing
for highly constrained systems,’’ in Proc. IEEE 17th Int. Symp. High
Assurance Syst. Eng. (HASE), Jan. 2016, pp. 47–54.

[118] I. Segall, R. Tzoref-Brill, and A. Zlotnick, ‘‘Simplified modeling of
combinatorial test spaces,’’ in Proc. IEEE 5th Int. Conf. Softw. Test.,
Verification Validation, Apr. 2012, pp. 573–579.

[119] R. Tzoref-Brill and S. Maoz, Lattice-Based Semantics for Combinatorial
Model Evolution. Cham, Switzerland: Springer, 2015, pp. 276–292.

[120] M. Spichkova and A. Zamansky, ‘‘A human-centred framework for
combinatorial test design,’’ in Proc. 11th Int. Conf. Eval. Novel Softw.
Approaches Softw. Eng. (ENASE), Apr. 2016, pp. 228–233.

[121] K. C. Tai and Y. Lie, ‘‘In-parameter-order: A test generation strategy for
pairwise testing,’’ in Proc. 3rd IEEE Int. Symp. High-Assurance Syst.
Eng., Nov. 1998, pp. 254–261.

[122] J. Bozic, D. E. Simos, and F. Wotawa, ‘‘Attack pattern-based combinato-
rial testing,’’ in Proc. 9th Int. Workshop Autom. Softw. Test (AST), 2014,
pp. 1–7.

[123] B. Garn, I. Kapsalis, D. E. Simos, and S.Winkler, ‘‘On the applicability of
combinatorial testing to Web application security testing: A case study,’’
in Proc. Workshop Joining AcadeMiA Ind. Contrib. Test Autom. Model-
Based Test. (JAMAICA), 2014, pp. 16–21.

[124] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG:
A general strategy for T-way software testing,’’ in Proc. 4th Annu. IEEE
Int. Conf. Workshops Eng. Comput.-Based Syst., Mar. 2007, pp. 549–556.

[125] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG-IPOG-
D: Efficient test generation for multi-way combinatorial testing,’’ Softw.
Test. Verification Rel., vol. 18, no. 3, pp. 125–148, Sep. 2008.

[126] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, ‘‘Refining
the in-parameter-order strategy for constructing covering arrays,’’ J. Res.
Nat. Inst. Standards Technol., vol. 113, no. 5, pp. 287–297, 2008.

[127] G. J. Holzmann, ‘‘The model checker SPIN,’’ IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[128] J. Lee, S. Kang, and D. Lee, ‘‘A survey on software product line test-
ing,’’ in Proc. 16th Int. Softw. Product Line Conf. (SPLC), vol. 1. 2012,
pp. 31–40.

[129] C. Yilmaz, M. B. Cohen, and A. A. Porter, ‘‘Covering arrays for efficient
fault characterization in complex configuration spaces,’’ IEEE Trans.
Softw. Eng., vol. 32, no. 1, pp. 20–34, Jan. 2006.

[130] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and
B. Natarajan, ‘‘Skoll: Distributed continuous quality assurance,’’ in Proc.
26th Int. Conf. Softw. Eng., May 2004, pp. 459–468.

[131] A. Deshpande and D. Riehle, The Total Growth of Open Source. Boston,
MA, USA: Springer, 2008, pp. 197–209.

[132] D. R. Kuhn and M. J. Reilly, ‘‘An investigation of the applicability of
design of experiments to software testing,’’ in Proc. 27th Annu. NASA
Goddard Softw. Eng. Workshop (SEW), 2002, pp. 91–95.

[133] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, ‘‘Software fault interactions
and implications for software testing,’’ IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418–421, Jun. 2004.

[134] R. C. Bryce and C. J. Colbourn, ‘‘Test prioritization for pairwise
interaction coverage,’’ in Proc. 1st Int. Workshop Adv. Model-Based
Test. (A-MOST), 2005, pp. 1–7.

[135] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, A Classification of Hyper-Heuristic Approaches.
Boston, MA, USA: Springer, 2010, pp. 449–468.

[136] E. K. Burke, G. Kendall, and E. Soubeiga, ‘‘A tabu-search hyperheuristic
for timetabling and rostering,’’ J. Heuristics, vol. 9, no. 6, pp. 451–470,
Dec. 2003.

[137] K. Z. Zamli, F. Din, G. Kendall, andB. S. Ahmed, ‘‘An experimental study
of hyper-heuristic selection and acceptance mechanism for combinatorial
T-way test suite generation,’’ Inf. Sci., vol. 399, pp. 121–153, Aug. 2017.

[138] S. K. Khalsa and Y. Labiche, ‘‘An orchestrated survey of available algo-
rithms and tools for combinatorial testing,’’ in Proc. IEEE 25th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2014, pp. 323–334.

BESTOUN S. AHMED received the B.Sc. degree
in electrical and electronic engineering from the
University of Salahaddin-Erbil in 2004, the M.Sc.
degree from University Putra Malaysia in 2009,
and the Ph.D. degree in software engineering from
University Sains Malaysia (USM) in 2012. He was
a Research Fellow with the Software Engineer-
ing Research Group, USM. He was as a Senior
Lecturer with Salahaddin University. He spent one
year doing his post-doctoral research in the Swiss

AI Laboratory, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale,
Switzerland. He is currently an Assistant Professor with the Department of
Computer Science and the Co-Founder of the Software Testing Intelligent
Laboratory, Czech Technical University in Prague. His primary research
interest includes software testing, search-based software testing, and applied
soft computing. He serves as a reviewer and an editorial member for many
international journals and an organizing committee member of many inter-
national conferences.

KAMAL Z. ZAMLI (M’17) received the
B.Sc. degree in electrical engineering from the
Worcester Polytechnic Institute, USA, in 1992,
theM.Sc. degree in real-time software engineering
from Universiti Teknologi Malaysia in 2000, and
the Ph.D. degree in software engineering from
Newcastle University, Newcastle upon Tyne, U.K.,
in 2003. He is currently the Dean and a Professor
with the Faculty of Computer Systems and Soft-
ware Engineering, University Malaysia Pahang.

His main research interests include search-based software engineering,
combinatorial software testing, and computational intelligence. He is a
member of MySEIG.

WASIF AFZAL received the Ph.D. degree in soft-
ware engineering from the Blekinge Institute of
Technology. He is currently a Senior Lecturer
with the Software Testing Laboratory, Mälardalen
University. His research interests include soft-
ware testing, empirical software engineering, and
decision-support tools for software verification
and validation.

MIROSLAV BURES received the Ph.D. degree
from the Faculty of Electrical Engineering, Czech
Technical University in Prague. He is currently
a Researcher and a Senior Lecturer in software
testing and quality assurance with the Faculty
of Electrical Engineering, Czech Technical Uni-
versity in Prague. His research interests include
model-based testing (process and workflow test-
ing and data consistency testing) efficiency of test
automation (test automation architectures, assess-

ment of automated testability, and economic aspects) and quality assurance
methods for the Internet of Things solutions, reflecting specifics of this
technology. In these areas, he also leads several research and development
and experimental projects. He is a member of the Czech Chapter of the
ACM, CaSTB, and ISTQB Academia Workgroup and participates in broad
activities in the professional testing community.

25730 VOLUME 5, 2017
94

11 Appendix E: Identi�cation of Potential Reusable Sub-

routines in Recorded Automated Test Scripts

[A.5] Miroslav Bures, Martin Filipsky, and Ivan Jelinek. Identi�cation of Potential Reusable
Subroutines in Recorded Automated Test Scripts. International Journal of Software
Engineering and Knowledge Engineering, 28(01), pages 3-36. 2018. (Q4, IF 0.3)

95

Identi¯cation of Potential Reusable Subroutines

in Recorded Automated Test Scripts

Miroslav Bures*, Martin Filipsky† and Ivan Jelinek‡

Department of Computer Science

Czech Technical University in Prague, Karlovo namesti 13
Prague 121 35, Czech Republic

*miroslav.bures@fel.cvut.cz
†filipma2@fel.cvut.cz
‡jelinek@fel.cvut.cz

Received 10 October 2016
Revised 22 November 2016

Accepted 23 June 2017

In the automated testing based on actions in user interface of the tested application, one of the
key challenges is maintenance of these tests. The maintenance overhead can be decreased by

suitably structuring the test scripts, typically by employing reusable objects. To aid in the

development, maintenance and refactoring of these test scripts, potentially reusable objects can

be identi¯ed by a semi-automated process. In this paper, we propose a solution that identi¯es
the potentially reusable objects in a set of automated test scripts and then provides developers

with suggestions about these objects. During this process, we analyze the semantics of speci¯c

test steps using a system of abstract signatures. The solution can be used to identify the
potentially reusable objects in both recorded automated test sets and tests programmed in an

unstructured style. Moreover, compared to approaches that are based solely on searching for

repetitive source code fragments, the proposed system identi¯es potentially reusable objects

that are more relevant for test automation.

Keywords: Software testing; test automation; automated test recording; test set optimization;

test code refactoring.

1. Introduction

Test automation represents one possible strategy for making the testing process more

e±cient. When implemented well, automated tests provide several bene¯ts compared

to manual testing: they can be automatically executed repeatedly on multiple

platforms, which lowers test execution costs; they are more precise in comparison to

tests performed by manual testers; and they can run in non-productive time slots in

the software development cycle (typically at night). Nevertheless, automated testing

also has its tradeo®s. The e®ort required to prepare automated tests is usually higher

*Corresponding author.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 28, No. 1 (2018) 3–36

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194018500018

3
96

than that required to prepare manual test cases. Precisely de¯ned sequences of steps

and expected results tend to be brittle and are a®ected whenever the System Under

Test (SUT) changes. In comparison to human testers, who use their intelligence to

overcome inconsistencies between test cases and the SUT, such inconsistencies

usually lead to interruptions in automated test °ow situations (and can also lead to

false error reports). Thus, when automated test scripts are designed sub-optimally or

if the SUT changes frequently, they need relatively costly maintenance. From our

observations [1] and those of others [2–5], costly test script maintenance is considered

as one of the biggest challenges in this domain. This issue persists regardless of the

test organization model used, which generally in°uences the test automation process

[6]. Moreover, the maintenance problem is signi¯cant ��� especially for automated

testing based on simulating a user's action in the Front-end (FE) user interface of the

SUT, which is the scope of this paper.

Currently, two major strategies are used for creating automated test scripts that

exercise SUT FE elements:

(i) Record and Replay, in which the test automation tool saves the steps the test

designer performs in the SUT FE, and

(ii) Descriptive Programming, in which the test designer writes the code for the

automated test script.

In practice, a combination of both variants can be used. Initially, we can record

the °ow of a user's actions in the SUT FE. Then, to ¯nalize the test scripts, we can

extend their code by adding more logic, for example, by adding assertions of the

expected test results. Generally, a test recording approach is viewed as a fast auto-

mation style, but one that is ine±cient from a test maintenance viewpoint [7–9].

From the maintenance viewpoint, it is di±cult to assess what an optimum be-

tween the record and replay and the descriptive programming approaches should be

because many factors in°uence the result: the structure of the automated test scripts,

the structure and testability of the SUT, the scope of the tests and many others. The

common generalization is that recording produces brittle automated tests but

requires relatively low investment, whereas descriptive programming reduces script

brittleness through various techniques (e.g. employing reusable objects, adding more

intelligence to SUT FE element locators, using extra con¯gurable layer for elements

identi¯cation, etc.), but at the cost of a higher initial e®ort. However, descriptive

programming can also result in higher script stability and, thus, lower maintenance

costs [7, 10]. We have con¯rmed this e®ect through practical observations of many

test automation projects.

From a technical point of view, record and replay or conducting descriptive

programming in a naive, unstructured manner usually leads to scripts that contain

a potentially high ratio of repeating fragments (an example is given in Fig. 1). These

code-fragment duplications are potentially problematic and can lead to increased

maintenance overhead and script brittleness. Reducing the duplicated code in automated

4 M. Bures, M. Filipsky & I. Jelinek

97

test scripts has been considered as an approach that can result in improved main-

tenance economics for almost two decades [11].

In our work, we try to reap the advantages of both recording and descriptive

programming. The relatively low cost of creating automated tests through recording

can be combined with decreased brittleness and more e±cient maintenance of the

test scripts by refactoring the repetitive parts of these scripts. We aid this refactoring

process using an automated method based on post-processing the recorded test

scripts and identifying the potentially reusable parts. The proposed solution can be

also applied to descriptively programmed ��� but poorly structured ��� scripts in

which few or no reusable objects are used.

In Front-End-based automated test scripts, duplication can occur at several

places. In simple form, the common locations can be categorized as follows:

(i) Setup, tear-down and other technical code locations that are common in the

scripts (e.g. SUT con¯guration, parameter initializations, etc.)

(ii) Localization of the SUT FE elements and of particular actions performed on

those elements. These sequences of common steps will be short and will likely

occur in numerous tests where a particular element in the SUT FE is accessed

and controlled by various tests covering various processes. An example might

be: \Localize the account number text ¯eld in the payment form and enter a

value."

(iii) Sequences of steps that represent a business action from test logic viewpoint.

Here, we expect longer common subsequences that are likely to occur in fewer

test scripts. An example: \Enter the payment details, submit the payment and

authorize it by typing of a sent SMS code".

In each of these categories, we can identify reusable objects. In the ¯rst area

(setup and tear-down), the potentially reusable objects are relatively easy to identify.

Fig. 1. An example of test scripts with repeating fragments (potentially reusable code).

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 5

98

Therefore, we focus primarily on the second and third areas. In these areas, recorded

and poorly structured automated test scripts usually contain considerable amounts

of non-optimized duplicated code.

This paper is organized as follows. We present the proposed solution in Sec. 2. In

Sec. 3, we describe the performed experiments and discuss the results. Section 4

presents the related works, and Sec. 5 lists the contributions of this study and

concludes the paper.

2. Proposed Solution

First, we give a brief overview of the principles behind the TestOptimizer ��� the

solution we propose to automatically identify potentially reusable subroutines in

automated test scripts. After TestOptimizer has identi¯ed repeating code fragments

in automated test scripts, it suggests the potentially reusable subroutines to the test

script developer. The ¯nal decision concerning whether a subroutine is reusable is the

responsibility of the developer. During this process, we report the positions in the test

source code where a reusable object can be de¯ned and where test automation code

can be refactored. To identify repeating fragments, we do not consider only identical

source code fragments because that approach would detect only trivial cases of code

redundancy. Instead, we analyze the source code of automated test scripts to identify

fragments that have the same semantics regarding the actions that the script per-

forms in the SUT FE. At this stage, our semantic analysis is still approximate and

can detect fewer refactoring opportunities than a human can; nevertheless, this

approach is already more e±cient than simply comparing source code fragments

(the details are provided in the Sec. 3). We do not distinguish between completely

reusable routines and partially reusable routines during the automated analysis:

developers can subsequently tailor the subroutines manually to ¯t their needs. For

instance, they can exclude steps from the subroutine or add new steps (e.g. test result

assertions).

The TestOptimizer solution is °exibly con¯gurable to accommodate various

testing tools, languages and development styles. It analyzes the code of automated

test scripts. This code can be written in a programming language (e.g. Java and

Selenium WebDriver [12]), or the code can even be an internal representation of test

cases in a particular tool (e.g. Selenese [13]).

The principles of this solution are outlined in Fig. 2. When submitted to the

TestOptimizer server (step 1), the automated test source code is converted into

abstract layer that re°ects the semantics of the test steps it contains (step 2). In the

abstract layer, analysis of repetitive parts is performed (steps 3 and 4). Then, based

on this analysis, a set of potential common subroutines is prepared and provided to

the user (step 5). The provided information can be then used to refactor the auto-

mated test scripts. The analysis rules parameters are stored in con¯guration ¯le.

In the current phase, we do not refactor the test scripts automatically; therefore,

the user maintains control of the source code during the process. The features of the

6 M. Bures, M. Filipsky & I. Jelinek

99

solution increase its °exibility and also di®erentiate our solution from previous work

in this area [14], as discussed in Sec. 4.

In the following subsections, we describe the entire process in detail. Following the

process steps outlined in Fig. 2, Sec. 2.1 describes step 2, Secs. 2.2 and 2.3 describe

steps 3 and 4, respectively, and Sec. 2.4 describes the TestOptimizer server interface,

corresponding to steps 1 and 5.

2.1. Automated test script abstraction

The test script analysis process converts the source test scripts to a universal ab-

straction before proceeding with further analyses for several reasons:

(i) To ensure platform independence of the proposed solution,

(ii) To conduct automated test script analyses on a semantic level, not only at the

source code text level,

(iii) To analyze test scripts that di®ering in notation yet are coded in one pro-

gramming language (e.g. di®erent developer programming styles or when parts

of the scripts are created in a framework, etc.), and

(iv) When ful¯lling the requirements (i)–(iii), to still be able to reuse existing

algorithms in searching for the longest common subsequences (LCS), which are

text based. TestOptimizer uses a genetic algorithm, the use of which has pre-

viously been explored for the for LCS problem [15].

To identify the semantics of the steps in the test cases, we introduce \step sig-

natures". Each step of the analyzed test script is converted to a signature. Signatures

hide the speci¯cs of the particular programming language notations and allow the

test case steps to be compared from a semantic point of view. Groups of identical

signatures indicate potential common subsequences in the analyzed test scripts.

Subsequently, we use this property to ¯nd the common subsequences (repetitive

parts) in the test scripts.

Before describing the signature formally, we give an example. Test cases are

sequences of steps that are executed through the testing tool; they are encoded as

commands in a scripting language. Because high-level programming languages such

as Java o®er programmers a variety of options on how to implement any particular

Fig. 2. Conceptual schema of the proposed solution.

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 7

100

step, we must consider this issue when automatically analyzing the test source code.

Listing 1 presents two such implementations of one identical test step written in Java

and Selenium WebDriver represented in two di®erent implementations.

In the source code, each test step consists of test automation application pro-

gramming interface (API) objects, their methods and parameters. Practically, it is

easy to imagine two test steps that perform the same action in SUT from a test

semantics point of view but that di®er in their speci¯c notation (even in the same

programming language and using the same test automation API).

Therefore, we translate these test steps to their signatures using a specialized

converter. A signature s is de¯ned as follows:

s ¼ ho;Xo; a;Xai;
where o is an object, a is an action, Xo is a set of additional attribute parameters for

identifying object o in the SUT FE and Xa is a set of parameters that specify the

testing data with which the action a will be performed.

Object o ¼ hc;ni represents an abstraction of a SUT FE control element (for

example, a text ¯eld or button link), independent from its physical implementation

in HTML.

An object o consists of a pairing of a class, c, and a name, n. The class de¯nes the

type of object (e.g. button or input box), while the name serves as a unique identi¯er

for a particular instance of an object and also links the object to its physical repre-

sentation in the SUT FE.

Practically, the object o represents an atomic element of the SUT FE that can be

located and is controlled by the test automation API. If the object name n is not

su±cient to clearly identify the FE element, other attribute parameters from Xo

can be used for its identi¯cation.

An attribute parameter, x 2 Xo, is a pairing of an attribute name and its value.

An action, a, is performed on object o in the SUT FE (for example submitting the

form or clicking on a link). A is the list of possible actions derived from the capa-

bilities of a particular test automation API, and a 2 A.

S is the set of all signatures created from the set of all analyzed test scripts.

In its textual representation (which is needed for further processing ��� the search

for potential common subsequences in the test scripts), the signature is de¯ned as the

following regular expression:

obj:<class>f.<object name>fþ<attribute parameter>¼<value>gg&act:

<action>fþ <parameter>:<value>g

Listing 1. Example of syntactic di®erences in two test steps that have the same semantics (API objects
appear in bold, methods in italics, and user-de¯ned parameters are underscored).

8 M. Bures, M. Filipsky & I. Jelinek

101

The individual elements of a signature are described in Table 1. We propose three

types of signatures with di®erent levels of detail, which are listed in Table 2.

The employment of signatures brings two main bene¯ts ��� despite the fact that

they are similar to real code. First, signatures allows us to isolate the TestOptimizer

core algorithms from the speci¯cs and complexity of di®erent test automation

notations (i.e. Python, Java, C# etc.), making TestOptimizer applicable to multiple

languages and notations. This isolation also allows modular extensions of the Test-

Optimizer framework without requiring any changes to the core algorithms. Second, it

allows us to °exibly con¯gure which parts of the automated test scripts will be analyzed:

The Level 0 signatures consist of descriptions of objects and actions. Using Level 0,

we search for groups of potentially similar actions performed on the same classes

(which practically means types) of objects and independently on particular elements

in the SUT FE. Level 0 is suitable for high-level analysis ��� identifying potential

candidates for common reusable object allocation and controlling procedures.

Level 1 signatures address particular physical elements and actions. Nevertheless, at

this level we do not analyze the parameter values with which the action will

be performed. Instead, this level is used to identify repeating common subroutines in the

analyzed test scripts that perform a certain action on a certain element of the SUT FE.

Level 2 signature analysis is the most detailed: at this level, we analyze the

parameter values used in the actions. To optimize the comparison operations when

searching for repeated common subsequences, long data strings in the signature are

replaced by hashed values. For speci¯c language test automation frameworks, we

apply di®erent sets of levels. For example, the MicroFocus Uni¯ed Functional

Table 1. Elements of a test step signature.

Element Description

obj Keyword for object

class Class c of the object o

object name Name n of the object o
attribute parameter Name of attribute parameter x : The attribute parameters can be used

to specify the physical representation of object o, if the object name

is not su±cient to localize the element in the SUT front-end exactly.

act Keyword for action

action Identi¯er of action a

parameter Parameter specifying, with which data the action a will be performed

value General parameter value (string)

Table 2. Levels of test step signature.

Signature level Signature

0 obj:<class>&act:<action>
1 obj:<class>.<object name>fþ<attribute parameter> ¼<value>g&act:<action>

2 obj:<class>.<object name>fþ<attribute parameter> ¼<value>g&act:<action>

fþ<parameter>:<value>g

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 9

102

Testing (UFT) framework uses an automated test scripting language based on Visual

Basic. This syntax allows using all three levels, 0–2. In contrast, for Selenium Web-

Driver automated test scripts, which are written in Java, only levels 1–2 are relevant.

The main di®erence between Level 1 and Level 2 is in their recognition of action

parameters. In some cases, it also worth distinguishing between identical steps

but with di®erent parameters because they may represent di®erent test semantics.

For example, in role based tests, the steps might be identical but a test developer

might want to keep them separate to add di®erent veri¯cation steps after creating

the tests. In this case, the user uses Level 2 signatures. In contrast, when action

parameters do not matter, Level 1 signatures can be used.

Table 3 lists examples of these levels for commands taken from automated test

scripts created by UFT and Selenium WebDriver. For UFT, the Visual Basic Script

command is

WebField("field1").Set "value"

whereas a similar Java command for Selenium WebDriver is:

driver.findElement(By.linkText("Automotive")).set("value");

Information extracted from the command for a particular signature level is

highlighted with underlined bold text in Table 3.

Now that we have described the signature, we can describe the overall conversion

process. The process of converting the source code scripts to their abstractions is

outlined in Fig. 3.

To transform the original automated test script to an abstracted test script

t ¼ ðs1; s2; . . . ; snÞ, we designed a special converter based on a lexical and semantic

analysis of the source code. In the lexical analysis phase, we tokenize the code

and assign meanings to every token (keywords, numbers, special characters, etc.),

which we use as an input for the semantic analysis. To understand Java semantics

and, thus, test steps written in Java, we implemented a semantic analyzer based

on the reference grammar de¯ned by Oracle [16]. The semantic analyzer parses

tokens and creates a syntax tree. We use the created syntax tree to translate

source code statements to de¯ned test step signatures. Currently, we have imple-

mented and tested the parser for Java with Selenium WebDriver and the JUnit

framework.

Table 3. Examples of information extracted from automated test commands for signature levels 0–2.

Signature

level

Information extracted from

HPE UFT command

Information extracted from

Selenium WebDriver command

0 WebField("field1").Set "value" not relevant

1 WebField("field1").Set "value" driver.findElement(By.linkText

("Automotive")).set("value");

2 WebField("field1").Set "value" driver.findElement(By.linkText

("Automotive")).set("value");

10 M. Bures, M. Filipsky & I. Jelinek

103

In the transformation process, we distinguish between

(i) convertible test steps, which represent test actions in the SUT FE and are

translated to test step signatures of the abstracted test script, and

(ii) non-convertible code, which is not translated because it is not relevant from a

test semantics viewpoint.

The convertible steps involve actions in the SUT FE that change the state of the

application (such as the example given in Fig. 2) and assertions of the expected

results. Examples of convertible and non-convertible steps are listed in Table 4. The

¯rst two rows show convertible steps because WebDriver navigates to a particular

page of the SUT FE in the ¯rst row, and then, the user checks for the presence of a

Table 4. Example of convertible and non-convertible steps in an automated test

implemented in Selenium WebDriver and the JUnit framework.

Type of step Example of source code

Convertible An action in SUT front-end

driver.get(baseUrl þ "/web/en-US/default.aspx?root¼1");

Convertible Assertion of results

assertTrue(isElementPresent(By.id("ContentInfo sp")));

Not convertible JUnit framework code except @Test

@After

public void tearDown() throws Exception f
driver.quit();

...

g

Fig. 3. Conversion of source automated test scripts to their abstractions.

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 11

104

given element in the SUT FE. In comparison, the command in the third row causes

WebDriver to shut down; it does not involve the SUT FE.

JUnit/TestNG annotations other than @Test such as @BeforeSuite, @AfterClass

and @BeforeMethod usually do not involve operations on the SUT FE because these

commands set up the test environment, prepare test data, implement common

actions or perform script cleanup. Moreover, commands in those actions have already

been identi¯ed as reusable, otherwise the user would not have put them into anno-

tated methods (for instance, the Selenium IDE saves recorded test steps methods

other than those annotated by @Test when the test is exported into a JUnit format).

Therefore, these other methods are not the targets of our investigation. However, we

plan to add con¯gurable support for determining which annotated methods should

be analyzed in a future version of the TestOptimizer framework.

Analysis ��� determining which parts of the code are convertible and which are

not ��� is based on the parsing rules stored in the converter con¯guration.

To maintain traceability between the signatures and the original test scripts, we

use location metadata (more details follow in Sec. 2.4). This location metadata

contains the respective code line-number range of the analyzed test script and the

original code fragment. These metadata are not included in the search for potentially

reusable parts (the search for the LCS, which is explained in the following subsection).

Moreover, each of the abstracted test scripts is accompanied by a set of metadata

(see the test script metadata in Fig. 3) that includes the source ¯lename and signature

count. The analyzed test suite (see the suite metadata in Fig. 3) contains both the code

of the test script and a count of the analyzed test scripts.

2.2. Identi¯cation of potential common subroutines

The input to the analysis is a set of abstracted test scripts, TA ¼ ft1; t2; . . . ; tng,
each of which is composed of an ordered sequence of step signatures: tx ¼
ðs1; s2; . . . ; snÞ, s1; s2; . . . ; sn 2 S, tx 2 TA.

During the analysis, we search for potential subroutines. We denote a potential

subroutine as p ¼ ðs1; s2; . . . ; smÞ, s1; s2; . . . ; sm 2 S, where p must be present in two

or more abstracted test scripts from TA.

Then, TF is a set of analyzed abstracted test scripts in which p is present,

TF � TA.

The output of the analysis is a set of potentially repeated subroutines,

P (generally, more potentially repeated subroutines exist in TA).

After the analyzed test scripts are converted to their abstractions, the next step is

to identify the LCS in TA. By translating the source test scripts to their abstractions,

we are able to analyze the test steps from a semantic viewpoint. Nevertheless, using

the signatures, we still process the text strings; therefore, we can reuse already

de¯ned algorithms for the problem of ¯nding LCS, which generally represents an NP-

complete problem. In TestOptimizer, we used the genetic algorithm, whose usability

for the LCS problem has been explored previously [15, 17].

12 M. Bures, M. Filipsky & I. Jelinek

105

The metadata of an abstracted test script are not considered in the analysis.

The LCS search is performed by the Solver component.

Before we run the genetic algorithm on TA to ¯nd common subsequences, we

reduce TA by excluding those test scripts that do not have at least one common

signature with the other test scripts in TA. This reduction is performed by the

function SELECT PROSPECTIVE TESTS, where TP denotes a set of prospective

test scripts to analyze, TP � TA, and TP :¼ SELECT PROSPECTIVE TESTS(TA).

For the SELECT PROSPECTIVE TESTS function, we adopted the Karp-Rabin

string matching algorithm [18]. The SELECT PROSPECTIVE TESTS function

searches for simple duplications in signatures among the set of analyzed abstracted

test scripts, TA. An abstracted test script test, tn 2 TA, is excluded from TP when

8 sn 2 tn : 8 to 2 TA=ftng : sn 62 to

After reducing TA to TP , we perform LCS on TP . The genetic algorithm uses a search

chromosome denoted as tc 2 TP . The LCS search runs in a de¯ned number of

iterations. At the end of the run, the potential variants of results are evaluated by the

¯tness function to select the best result (set of candidate sequences), which is then

processed further.

In the TestOptimizer project we experimented with several strategies to optimally

con¯guring the LCS search in this speci¯c area. We have tried to design the ¯tness

function to prefer the longest possible sequences and the sequences that occur most

often. The results, besides the settings used for the LCS algorithm, depend on the

selection of the chromosome tc. This selection is discussed later.

The question is: What would be more interesting for the test code developer from

a refactoring viewpoint? A few long common subsequences or a larger number of

shorter common subsequences? It is di±cult to generalize which approach would be

more e±cient and useful in a particular practical case because the style in which the

scripts are structured and the speci¯c code being analyzed di®ers. A user might be

interested in suggestions at di®erent levels. Therefore, we decided to let the user

wield the °exibility of making this decision. We de¯ned metrics to select the best

result for the potential subsequences in the set of analyzed scripts: Subroutine

Quality (SQ), de¯ned by Eq. (1), and Analysis Variant Quality (AVQ), de¯ned

by Eq. (2).

SQðp;TAÞ ¼ jpj � jTF j: ð1Þ

TF is a set of analyzed abstracted test scripts in which p is present, and TF � TA.

AVQðP ;TAÞ ¼
X

p2P
SQðp;TAÞ: ð2Þ

A user can adjust the preferences by setting the parameters LengthWeight and

TestCountWeight, which are real number constants whose values are set by the user

before the analysis of the automated test set begins. A user can determine the best

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 13

106

values for LengthWeight and TestCountWeight experimentally by running several

analysis with di®erent values.

By increasing LengthWeight, the user prefers the identi¯cation of longer common

subsequences, which tend to occur less often in analyzed test cases, and by increasing

TestCountWeight, the user prefers the identi¯cation of possibly shorter common

subsequences that occur more often in analyzed test cases.

Therefore, LengthWeightþ TestCountWeight ¼ 1, LengthWeight > 0 and

TestCountWeight > 0.

The LengthWeight and TestCountWeight parameters are used in several parts of

the analysis, as described later. We ¯rst use these parameters in the con¯guration of

the ¯tness function for LCS search. This con¯guration is presented in Listing 2.

If the system does not ¯nd any reusable routines it may mean that either (i) there

are no common steps in the analyzed scripts, or (ii) the user set inappropriate values

for the con¯guration of one or more input parameters. Consequently, the solver

inclines to a local optimum found in a single test. In such cases, it is recommended

that the user restart the analysis with a di®erent con¯guration.

In the following subsection, we present the details of the algorithms the Tes-

tOptimizer uses to identify potential common subroutines in a set of abstracted

automated test scripts.

2.3. Used algorithms

As introduced above, the output of the analysis is a candidate sequence created for

chromosome tc. The sequence is encoded as a binary string. If a signature (repre-

senting a test step) from chromosome tc is present in one or more abstracted test

scripts (we denoted them already as TF ;TF � TP ; tc 62 TF), it is encoded by a one in

the binary string; otherwise, it is encoded by a zero. Because [15] demonstrated that

the genetic algorithm achieves better results when the population is empty (i.e. the

population is represented by zeros), we do not use any technique to generate the

population.

Figure 4 shows an example in which TP ¼ ft1; . . . ; t5g and t1 ¼ tc is the chro-

mosome. TF is not yet known. The tc, potential common steps (which will be ana-

lyzed later to ¯nd potential subroutines) are depicted by black rectangles; other steps

are depicted by white rectangles.

Listing 2. Con¯guration of ¯tness function for Longest Common Subsequences (LCS) search.

14 M. Bures, M. Filipsky & I. Jelinek

107

When the potential common steps are identi¯ed in chromosome tc, we need to

localize them in TP nftcg. The details are presented in Algorithm 1. The asymptotic

complexity of the algorithm in the worst case is given by the count of found sig-

natures in the chromosome, the size of the analyzed set and by the number of

signatures in a test from the analyzed set. Summarized, this complexity is

OðjTpjjtcjjtmax jÞ, where tmax is an abstracted test script with the highest number of

signatures, tmax 2 TP .

In our example, Fig. 5 presents the result of Algorithm 1: a set of analyzed

abstracted test scripts, in which common steps have been identi¯ed. In this example,

there is a chance that the test script set ft1; t2; t4; t5g can contain potential common

subroutines. Tests t1; t2; t4 and t5 are likely to contain one three-step subroutine and

one two-step subroutine while test t4 is likely to contain only the three-step sub-

routine. The test script t1 is the chromosome and does not have to be analyzed but

we need to ¯nd the remaining tests.

Thus, in the next step, we ¯nd the potential common subroutines in TP . This

is done by Algorithm 2. The output of Algorithm 2 is a set of detected potential

common subroutines, denoted previously as P . The parameter RequiredMinLength

Fig. 4. Example of an output of the LCS algorithm: the potential common steps for chromosome tc.

Algorithm 1. Localization of the potential common steps in the abstracted test

scripts.

FIND COMMON STEPS(tc, TP)

foreach sc ∈ tc for each signature from the chromosome

foreach t ∈ (TP \{tc}) for each abstracted test script in the

analyzed set, excluding the chromosome

foreach s ∈ t for each signature from the analyzed

abstracted test script

if sc = s THEN s.common(sc) mark s as being common with sc
return TP

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 15

108

speci¯es minimal length (the number of test-step signatures) of potential common

subroutines that will be identi¯ed. This parameter is speci¯ed by the user.

In Algorithm 2, the array \occurrence" contains information concerning the

number of tests from TP in which a particular signature occurs. Then, the

\max occurence" variable contains the largest number of tests in which some of

the signatures have occurred thus far during the processing. The asymptotic com-

plexity of this algorithm is given by the size of the analyzed set and the number of

signatures in a processed test for the ¯rst phase. The computation of the second

phase also depends on the number of detected potential subroutines. Thus, the

complexity is OðjTpjðjtmax j þ jtmax jjRmax jÞÞ, where tmax is the abstracted test script

with the highest number of signatures, tmax 2 TP , and Rmax is the largest of the sets

of detected potential common subroutines created for each abstracted test script in

the analyzed TP .

In the physical implementation of the algorithm, we store the information con-

cerning where in the analyzed scripts the signature is positioned. This is ensured by

the following additional metadata of the signature object:

(i) Where the signature s is positioned in the abstracted test script, t 2 TP ; and

(ii) Where the signature is positioned in the original test script: the location

metadata presented above (refer to Fig. 3).

Figure 6 illustrates the situation for our example. Common steps in the tests

are depicted by black rectangles and other steps by white rectangles. In our

example, there are two potential common subroutines, depicted as Subroutines

A and B. It holds that 9 T1 � TP : jT1j > 1; 8 tx 2 T1 : A � tx and 9 T2 � TP :

jT2j > 1; 8 tx 2 T2 : B � tx.

In Fig. 6, potential common subroutine B follows subroutine A in each of the test

scripts in which they occur. However, this is only an example; generally, the iden-

ti¯ed potential subroutines detected by TestOptimizer can occur in any order in the

analyzed test scripts. For example, in some of the analyzed test scripts, subroutine

B could occur before subroutine A.

Fig. 5. The potential common steps localized in abstracted test scripts.

16 M. Bures, M. Filipsky & I. Jelinek

109

Algorithm 2. Finding common subroutines in the abstracted test scripts.
FIND SUBROUTINES(tc, TP ,RequiredMinLength)

SET occurrence[] to 0 set all elements of occurrence array to 0

max occurence := 0 set max occurence to 0

occurrence[] :=

FIND CANDIDATES(tc, TP ,RequiredMinLength, occurrence[], max occurence)

build potential candidate subroutines from common steps in tests

C := Ø empty the sequence of candidate steps

P := Ø empty the set of final detected potential common subroutines

P := FILTER CANDIDATES(tc, TP , RequiredMinLength, occurrence[], max occurence, C, P)

exclude low quality candidate subroutines

return P

FIND CANDIDATES(tc, TP , RequiredMinLength, occurrence[], max occurence)

∀t ∈ (TP \{tc}) for each abstracted test script in the analyzed set

C := Ø empty the potential sequence of common steps

R := Ø empty the set of detected potential common subroutines

foreach s ∈ t for each signature from the analyzed abstracted test script

if s being marked as common with any other signature (see the

LOCALIZE COMMON STEPS, Algorithm 1) then

C := (C, (s)) append the potential sequence of common steps by signature s

else

if |C| >= RequiredMinLength then

R := R ∪ {C} add the potential sequence of common steps

C to the set of detected

potential common subroutines

end if

C := Ø empty the potential sequence of common steps

end if

if |C| >= RequiredMinLength then

R := R ∪ {C} add the potential sequence of common steps C to the set of

detected potential common subroutines

C := Ø empty the potential sequence of common steps

else

C := Ø empty the potential sequence of common steps

end if

foreach r ∈ R for each of detected potential common subroutines

foreach s ∈ r for each signature in a detected potential subroutine

occurrence[s] = occurrence[s] + 1

if max occurence < occurrence[s] THEN max occurence = occurrence[s]

end if

return occurrence[]

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 17

110

In addition to the con¯guration of the genetic algorithm for the LCS search, the

results also depend on the selection of chromosome tc. We allow two principal modes

of analysis.

(i) The user wants to know whether a particular subroutine (for instance an already

de¯ned reusable subroutine) occurs in a set of analyzed test scripts. In this case,

a test that contains this subroutine will be set as chromosome tc.

(ii) The user simply wants to know if there are potential common subroutines in

a set of automated test scripts. In this case, chromosome tc is unknown

in advance.

Fig. 6. The potential common subroutines identi¯ed in abstracted test scripts.

Algorithm 2. (Continued)

FILTER CANDIDATES(tc, TP , RequiredMinLength, occurrence[], max occurence, C,P)

∀sc ∈ tc for each signature from the chromosome

if occurrence[sc] = max occurence then

C := (C, (sc)) append the potential sequence of common steps by

signature sc

else

if |C| >= RequiredMinLength then

P := P ∪ {C} add the potential sequence of common steps C to the set of

detected potential common subroutines

end if

C := Ø empty the potential sequence of common steps

end if

return P

18 M. Bures, M. Filipsky & I. Jelinek

111

Table 5 lists the details.

Algorithm 3 speci¯es the processing in CHROMOSOME MANUAL mode. TA is

reduced to TP by SELECT PROSPECTIVE TESTS, and then, LCS followed by the

algorithms FIND COMMON STEPS and FIND SUBROUTINES are performed for

the de¯ned tc.

Algorithm 4 speci¯es processing in CHROMOSOME AUTO mode. First, TA is

reduced to TP by SELECT PROSPECTIVE TESTS; then, prospective chromosomes

are selected from TP . For each of these chromosomes, we perform the LCS search

followed by the algorithms FIND COMMON STEPS and FIND SUBROUTINES. The

results are collected and ¯nally, the best results are selected by the AVQ metric

(therefore, the LengthWeight and TestCountWeight parameters plays a role in the

selection). The asymptotic complexity of Algorithm 4 is determined by the complexity of

the LCS search algorithm, which is Oðn jTpjÞ, where n is the sum of jtj for all t 2 TP [19].

TC denotes a set of prospective chromosomes, TC � TP .

The parameter IterationsCount speci¯es how many iterations for various chro-

mosomes should be executed in total. This limit is de¯ned for performance reasons.

The maximum value of iterationsCount is jTC j.

Table 5. Methods of chromosome selection.

Method Selection of tc Description

CHROMOSOME MANUAL by the user Principle: Full user control: The user selects the

chromosome and a set of test scripts to analyze.

Use case: The user wants to know whether a particular
reusable routine occurs in a set of analyzed scripts.

Algorithm: CHROMOSOME MANUAL SEARCH,

(Algorithm 3 is de¯ned later).

CHROMOSOME AUTO Automated, for
selected suitable

tc 2 Tp

Principle: The user selects only a set of test scripts to
analyze; the chromosome is selected by the solver

automatically.

Use case: The user simply wants to know whether

there are common subroutines in the set of scripts.

Algorithm: CHROMOSOME AUTO SEARCH,
Algorithm 4 de¯ned further on.

Algorithm 3. Processing in CHROMOSOME MANUAL mode.
CHROMOSOME MANUAL SEARCH(TA, RequiredMinLength, LengthWeight,

TestCountWeight)

TP :=SELECT PROSPECTIVE TESTS(TA) select prospective tests to analyze

LCS(tc, TP , LengthWeight,TestCountWeight) longest common subsequences search

FIND COMMON STEPS(tc, TP) post-processing, see Algorithm 1

P := FIND SUBROUTINES(tc, TP ,RequiredMinLength) post-processing, see Algorithm 2

return P

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 19

112

The SELECT PROSPECTIVE CHROMOSOMES function searches for tests

that are suitable for selection as chromosomes. We employ the Karp–Rabin [17]

algorithm to count duplications in the abstracted test scripts from TP . Based on the

number of duplicates found, we select the abstracted test scripts whose steps are as

di®erent as possible. Those tests are then selected as chromosomes.

2.4. Parameterization and request and response structure

In this subsection, we summarize the parameters that in°uence the analysis and

describe the output of the analysis ��� the set of potential common subroutines that

the end user will use to refactor the test scripts.

The request for analysis consists of the parameters summarized in Table 6. The

result of the analysis is summarized in Table 7. The resulting potential common

subroutines indicate potentially reusable objects in the scripts. During the refac-

toring process, it is the user's responsibility to decide, how to best employ the pro-

vided facts during code structuring. The structure of the analysis results is

summarized in Fig. 7. Technical metadata are not depicted in the ¯gure.

To determine the parameters scriptName, lineNumberFrom and lineNumberTo,

we use the location metadata paired with the signatures as discussed above. The

values of codeFragment are then determined from source scripts stored in the cache,

using the parameters scriptName, lineNumberFrom and lineNumberTo.

Algorithm 4. Processing in CHROMOSOME AUTO mode.

CHROMOSOME AUTO SEARCH(TA, RequiredMinLength, LengthWeight,

TestCountWeight, IterationsCount)

X := Ø empty the set of results

TP := SELECT PROSPECTIVE TESTS(TA) select prospective tests to analyze

TC := SELECT PROSPECTIVE CHROMOSOMES(TP) select prospective

chromosomes (see further)

if IterationsCount > |TC | then IterationsCount = |TC | adjust the number of iterations

foreach tc ∈ TC for all prospective chromosomes

if IterationsCount > 0 then still to iterate?

LCS(tc, TP ,LengthWeight,TestCountWeight) longest common subsequence search

FIND COMMON STEPS(tc, TP) post-processing, see algorithm 1

F := FIND SUBROUTINES(tc, TP ,RequiredMinLength) post-processing,

see algorithm 2

X := X ∪ {F} collect the potential results

IterationsCount = IterationsCount − 1 decrease iteration counter

end if

P = x,x ∈ X, x is having the highest AVQ(x, TP)

return P select the best results in accord to user’s preferences

20 M. Bures, M. Filipsky & I. Jelinek

113

Table 6. Request parameters in°uencing the analysis.

Parameter Description

requestID ID of the request speci¯ed by user. The ID allows to track the submitted

request during processing on the TestOptimizer server

converterType The type of converter to use (which translates original test scripts to their
abstractions). TestOptimizer provides di®erent converters for di®erent

languages and test automation APIs.

startPoint User can select one of following options:

NEW UPLOAD - Set of automated test scripts for analysis are uploaded to
the server. The scripts are then converted to abstracted test scripts TA and

analyzed for potential common subroutines by speci¯ed parameters.

SCRITPS CACHED - Uploaded scripts are taken from cache and

converted to abstracted test scripts TA, then analyzed for potential
common subroutines by speci¯ed parameters.

ABSTRACTION CACHED – Created TA is analyzed again with di®erent

parameters

scriptCacheID In case of SCRITPS CACHED: ID of set of already uploaded test scripts for
analysis.

scripts In case of NEW UPLOAD: Stream of automated test scripts for analysis to

upload.
signatureLevel Level of detail, which is captured by signatures during the conversion to

abstracted test script. For overview of levels, refer to Table 2. Expected in

case of NEW UPLOAD and SCRITPS CACHED options.

requiredMinLength minimal length of potential common subroutines, which will be identi¯ed
(refer to RequiredMinLength parameter in Algorithm 2)

lengthWeight Preference of longer potential subsequences in less test scripts by Length-

Weight parameter (refer to ¯tness function in LCS and Algorithm 3)

testCountWeight Preference of shorter potential subsequences in more test scripts by
TestCountWeight parameter (refer to ¯tness function in LCS and

Algorithm 3)

chromosomeMode CHROMOSOME MANUAL (user's preference to manually select a
chromosome) or CHROMOSOME AUTO mode, refer to Table 5.

chromosome In case of CHROMOSOME MANUAL mode: explicit selection of

chromosome tc 2 TA

iterationsCount In case of CHROMOSOME AUTO mode: IterationsCount parameter,
specifying how many iterations for various chromosomes will be executed

(refer to Algorithm 3)

Table 7. Structure of the response, including parameters that in°uenced the analysis.

Parameter Description

TECHNICAL METADATA

requestID requestID (copied from the request call)

scriptCacheID ID of the server cache record in which the analyzed original test scripts are
saved

Log Access to the log, which lists details from the conversion and analysis process

(a link to the log ¯le stored on the server)

SUBROUTINE SET: For the set of potential common subroutines P :

totalNumberOfScripts Total number of analyzed test scripts, jTAj
lengthWeight LengthWeight parameter speci¯ed in the request

testCountWeight TestCountWeight parameter speci¯ed in the request

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 21

114

Fig. 7. Structure of analysis results provided by the TestOptimizer server.

Table 7. (Continued)

Parameter Description

AVQ AVQ(P ;TA, LengthWeight, TestCountWeight) value to help the user to
decide, if analysis result is good enough for particular TA, or if to try to

analyze TA again with di®erent parameters

SUBROUTINE: For each potential common subroutine p 2 P :

subroutineID ID of potential common subroutine p

SQ SQ(p;TA) value to help the user to decide, which of the potential subroutines

to prefer in identi¯cation of reusable objects
numberOfScripts Number of test scripts, where the potential common subroutine p occurs

scriptNames List of names of test scripts, where the potential common subroutine p occurs

SCRIPT: For each of test scripts, where the potential common subroutine p occurs:
scriptName Name of test script, where potential common subroutine p occurs

lineNumberFrom Number of line in the original test script code, where potential common

subroutine p starts.
lineNumberTo Number of line in the original test script code, where potential common

subroutine p ends.

codeFragment Aggregated fragment of analyzed original test script code.
SIGNATURE: For each occurrence of signature s 2 p in an original test script:

subroutineIDref Reference to ID of potential common subroutine p

scriptName Names of test script, where s occurs

lineNumberFrom Number of line in the original test script code, where signature s starts.
lineNumberTo Number of line in the original test script code, where signature s ends.

codeFragment Fragment of analyzed original test script code. Can be di®erent for individual

signatures from p.

22 M. Bures, M. Filipsky & I. Jelinek

115

We start this process for particular signatures (SIGNATURE level, see Table 5).

Then, we compose the allocation data to the blocks in the order in which the sig-

natures occur in the potential common subroutine in the original test script

(SCRIPT level, see Table 5).

The codeFragment can be considered as a duplicate at ¯rst glance; nevertheless,

there are several reasons why we include the original code fragment in the response:

(i) We are abstracting the automated test scripts to capture the semantics of their

steps; therefore, the speci¯c text of a codeFragment could be di®erent even

though their signatures are identical in p.

(ii) Using codeFragment simpli¯es the implementation of the plugin for the user's

test automation tool.

(iii) For testing purposes, the returned codeFragment can be quickly compared with

a fragment of the original source code in the user's test automation tool, which

is speci¯ed by scriptName, lineNumberFrom and lineNumberTo.

3. Experimental Veri¯cation

In this section, we describe a physical implementation of the proposed solution and

some performed experiments, during which we both adjusted the con¯guration

details of the proposed method and veri¯ed its practical functionality.

3.1. Prototype implementation

The TestOptimizer server is implemented using the Java 2 Enterprise Edition server

application and a relational database combined with the ¯le system as data storage.

The system exposes its functionality via an API. Through this API, a user can

upload automated test scripts for analysis and retrieve the results (refer to the

description of the request and response structure in Sec. 2.4). To make working with

the TestOptimizer server user friendly, plugins can be created for individual test

automation Integrated Development Environments (IDEs).

Using the API interface, we can also connect to a web console through which

administrative tasks can be performed for the TestOptimizer server Another option

for performing administrative tasks is to use the command-line interface on the

TestOptimizer server. The high-level architecture of the system from a conceptual

point of view is depicted in Fig. 8. Storage components are depicted by the grey

rectangles (physically, a common relational database is used). The arrows indicate

the main data °ows in the process.

Processing in the TestOptimizer server is designed as a modular pipeline; the

individual parts can be adjusted °exibly. The pipeline starts with a user's request to

optimize scripts. The request is handled by the runAnalysis function of the API.

After upload to the server via the API, analyzed automated scripts are stored in

the Script cache to save network tra±c and reduce processing time (which is

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 23

116

particularly important when a user reruns the analysis with di®erent parameters on

the same set of scripts). This is determined by the startPoint parameter in the

runAnalysis request.

In the Converter, the original test scripts are converted to the abstracted test

script form (refer to Sec. 2.1). For each combination of particular programming

language and test automation API (for instance Java and Selenium WebDriver API

or Visual Basic for HPE UFT), a variant of the Converter must be prepared. The

implemented prototype includes a converter for Java and Selenium WebDriver

API. The speci¯c converter used for the analysis is speci¯ed by the converterType

parameter in the runAnalysis request.

Abstracted test scripts are stored in the Script Abstraction cache. Records in this

cache are linked with the original scripts stored in the Scripts cache. When the user

speci¯es the startPoint as ABSTRACTION CACHED, the system checks whether

the Script Abstraction cache contains previously created abstractions for the spec-

i¯ed scriptCacheID and signatureLevel. If yes, this cache is used, otherwise the

Converter is executed again for this new con¯guration.

The analysis process continues in the Solver component, which performs the main

computations. The key goal for the Solver is to ¯nd the longest common sub-

sequences in the chromosome using the core LCS algorithm. Subsequent tasks are

(i) to identify common steps in the subsequences (the FIND COMMON STEPS

algorithm) and (ii) to compute the subroutines from the common steps (the

FIND SUBROUTINES algorithm). The Solver optionally also performs the CHRO-

MOSOME AUTO SEARCH. The results are stored in the Results storage and pro-

cessed by the Suggestion module to provide the response from the system interface.

Due to the processing times, the request and response API calls are asynchronous.

By making a runAnalysis request, a user starts the processing on the server. To track

Fig. 8. Architecture overview of TestOptimizer prototype.

24 M. Bures, M. Filipsky & I. Jelinek

117

the submitted request during further processing, the requestID assigned by user

is used.

The whole process is orchestrated by the Dispatcher component. The Dispatcher

also manages the pool of possible concurrent requests to the TestOptimizer sever.

3.2. Experiments

We veri¯ed the proposed solution through a set of experiments, in which we used

automated testing scripts from several test automation projects. For these experi-

ments, we de¯ned two research questions:

(i) Functionality of the solution: Does the proposed algorithm work on various

real automated test scripts and does it provide better results than typical

established solutions for identifying duplicate code?

(ii) Usability of the solution in the test automation process: does the analysis

save the developer time during test script refactoring?

Table 8 describes the sets of automated test scripts (taken from real test auto-

mation projects) used in testing the proposed solution. All the test scripts were

recorded in Selenium IDE, then exported to Selenium WebDriver (we selected this

setup because semi-automated optimization of recorded scripts is the major use case

for TestOptimizer).

Regarding the ¯rst research question, we want to determine how e±ciently the

solution detects potential common subroutines from real automated test scripts. To

be more speci¯c: Does the solution work properly and does it provide better

results than common approaches based on analysis of source code frag-

ments which do not re°ect the speci¯c context and structure of automated

test code? To answer this question, we compared our approach, based on the

semantics of test steps, with a common approach based on a direct analysis of the

source code fragments. For this comparison, we chose the established PMD tool [20]

for the Eclipse IDE, which uses the Rabin–Karp string search algorithm to ¯nd

duplicated code. We analyzed the sets of test scripts (see Table 8) using both the

PMD and TestOptimizer server and compared the results, which are presented in

Tables 9 and 10. In this comparison, in addition to the analysis variant quality

Table 8. Sets of automated test scripts used in experiments.

Script set ID Language Number of scripts Number of code lines

1 Java, Selenium WebDriver 70 6728

2 Java, Selenium WebDriver 99 9345

3 Java, Selenium WebDriver 50 4507
4 Java, Selenium WebDriver 150 16347

5 Java, Selenium WebDriver 120 11704

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 25

118

(AVQ) measure de¯ned above, we also used an averaged value of sequence quality

(ASQ):

ASQðP ;TAÞ ¼
X

p2P
SQðp;TAÞ=jP j: ð3Þ

For the results provided by both the PMD and TestOptimizer server, we also

performed a manual analysis to determine which of the found potential subsequences

is truly suitable for refactoring in the form of a common subroutine in the context of

the automated test scripts. Manual analysis of the true relevance of the identi¯ed

potential subroutines was performed by two expert test-automation-code developers,

who were asked to (i) exclude all identi¯ed subroutines already included in any

longer subroutine; (ii) exlude all subroutines in which object descriptors were mis-

taken for action parameters; and (iii) exclude all subroutines in which instances of

classes and static members are mistakenly identi¯ed (for example, a driver.¯ndEle-

ment command may be mistaken for an Assert.AssertTrue command). Each expert

developer carried out the manual analysis; subsequently, we performed a cross check

to verify the results.

In the ¯rst part of Table 9 (Raw data), all the identi¯ed potential common sub-

routines produced are evaluated, using the AVQ metric. Then, in the second part,

Truly relevant potential subroutines after manual analysis, which is described in the

previous paragraph, we provide the numbers after the manual analysis and correc-

tion that identi¯ed those potential common subroutines that are truly relevant

candidates for a common subroutine in an automated test. The third part of Table 9

Table 9. Comparison of TestOptimizer with PMD using AVQ values.

Script set ID

AVQ for

PMD

AVQ for TestOptimizer,

signatureLevel ¼ 0

AVQ for TestOptimizer,

signatureLevel ¼ 1

AVQ for TestOptimizer,

signatureLevel ¼ 2

Raw data

1 320 363 176 98
2 502 1421 798 181

3 324 197 183 66

4 700 652 312 120

5 592 438 288 158

Truly relevant potential subroutines after manual analysis
1 215 233 172 96

2 411 671 798 162

3 179 154 179 63

4 312 425 312 112
5 282 259 284 155

Relative ratio of relevant potential subroutines

1 67,2% 64,2% 97,7% 98,0%

2 81,9% 47,2% 100,0% 89,5%
3 55,2% 78,2% 97,8% 95,5%

4 44,6% 65,2% 100,0% 93,3%

5 47,6% 59,1% 98,6% 98,1%

26 M. Bures, M. Filipsky & I. Jelinek

119

gives the Relative ratio of relevant potential subroutines. The same organization

applies to Table 10, where the respective ASQ values are presented.

Regarding the con¯guration of TestOptimizer server, for script sets 1, 3, 4 and 5,

lengthWeight was set to 0.9 and testCountWeight to 0.1. For script set 2, length-

Weight was set to 0.95 and testCountWeight to 0.05. In addition, chromosomeMode

was set to CHROMOSOME AUTO and iterationsCount to 5. The collected data

considered only those potential subroutines where jpj >¼ 3. Regarding the con¯g-

uration of PMD, we used the standard settings from Eclipse (Kepler edition 2016).

The minimal length of common code blocks was set to 3.

From evaluating the data in Table 9 and the feedback from the manual analysis

and corrections, several conclusions can be made:

(i) Without further analysis of the relevance of the potential subroutines in the

context of the automated tests (see the Raw data section of Table 10), the ASQ

data show that for analyses at signatureLevel ¼ 0, TestOptimizer performed

better, but for more detailed analysis (signatureLevels 1 and 2) PMD returned

better sets of potentially reusable subroutines.

Nevertheless, after the expert manual analysis of which potentially reusable

subroutines identi¯ed by both solutions are truly relevant for automated test

optimization (see the \Truly relevant potential subroutines after manual ana-

lysis" sections of Tables 9 and 10), several conclusions can be made:

(ii) The setting signatureLevel ¼ 2 was too speci¯c to be e±cient. At this level we

also analyze the speci¯c testing data used in the actions. This data typically

Table 10. Comparison of TestOptimizer with PMD using ASQ values.

Script
set ID

ASQ for
PMD

ASQ for

TestOptimizer,
signatureLevel ¼ 0

ASQ for

TestOptimizer,
signatureLevel ¼ 1

ASQ for

TestOptimizer,
signatureLevel ¼ 2

Raw data
1 40 60,5 35,3 18,9

2 167,3 355,3 199,5 90,5

3 36 49,3 43,5 24,8

4 140 163 122 60
5 74 109,5 48 39,5

Truly relevant potential subroutines after manual analysis

1 26,9 38,8 34,7 18,4
2 137 167,8 199,5 81

3 19,8 38,5 42,8 23,3

4 104 106,3 122 56
5 47 64,8 47,3 38,8

Relative ratio of relevant potential subroutines

1 67,2% 64,2% 98,1% 97,4%
2 81,9% 47,2% 100,0% 89,5%

3 54,9% 78,2% 98,5% 93,9%

4 74,3% 65,2% 100,0% 93,3%

5 63,5% 59,1% 98,6% 98,1%

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 27

120

di®ers in various potential subroutines in the analyzed abstracted test scripts.

Thus, at this level, the system identi¯es fewer potential subroutines.

(iii) Based on the feedback from the expert manual analysis and correction, signa-

tureLevel 0 was found to be too abstract to derive common subroutines in the

code e±ciently. At this level, the system identi¯es many potential subroutines,

but signi¯cantly fewer of these are truly relevant for ¯nal common subroutines.

As the experiment results showed, signatureLevel 0 is suitable for identifying

potential common subroutines at a high level, but not for practical test code

refactoring suggestions.

(iv) The setting signatureLevel ¼ 1 seems to be the best level of abstraction at which

to analyze the test scripts with regard to the AVQ and ASQ values. At this

level, the TestOptimizer yields better results than the PMD.

(v) Concerning the speci¯c context and structure of automated test code, at sig-

natureLevels 1 and 2, the TestOptimizer solution provides more relevant results

than does the general search for common subroutines by the PMD (see Tables 9

and 10, section \Relative ratio of relevant potential subroutines").

These results show that TestOptimizer, which is speci¯cally tailored to the con-

text of test automation code, identi¯es more relevant potential common subroutines.

In contrast, the PMD simply reports on the number of sequences, which were less

relevant from an automated test semantic viewpoint.

To test the practical usability of the solution, we compared independent manual

analyses of potential common subroutines independently performed on three sets of

the automated test scripts with the results provided by the TestOptimizer server. In

this test, we were interested in two aspects:

(1) The relevance of the potential common subroutines found;

(2) The gain in time savedwhen using automated analysis via the TestOptimizer server.

The independent manual analysis of the test scripts was performed by a group of

5 senior and 25 junior Java developers, who all had equivalent training in Selenium

WebDriver and test code refactoring principles. During this manual analysis, the

participants were allowed to use any refactoring and code duplication search tools to

aid the process, except TestOptimizer.

The results are presented in Table 11.

Table 11. Comparison of automated analysis byTestOptimizer server with independentmanual analysis.

Script
set ID

ASQ for
performed
manual
analysis

ASQ for
TestOptimizer,

signatureLevel ¼ 1

ASQ for
TestOptimizer,

signatureLevel ¼ 1,
after manual

revision

Average time
spent by developers

performing the
manual analysis

[hours]

Time spent
using Test
Optimizer
[hours]

Time saved
by using Test
Optimizer
[percentage]

1 38,4 35,3 34,7 3,2 0,9 71,88%
2 218,1 199,5 199,5 4,1 1,5 63,41%
3 30,1 43,5 42,8 1,7 0,6 64,71%

28 M. Bures, M. Filipsky & I. Jelinek

121

In the Time spent using TestOptimizer column, the server computation time is

not included. From this experiment, we can make the following conclusions:

(i) For the cases used in the experimental study, the relevance scores (expressed by

ASQ) of both the manual analysis and the TestOptimizer results are compa-

rable.

(ii) Using TestOptimizer server signi¯cantly reduced the time required (by 65% on

average).

The measured times are in hours; nevertheless we need to consider that Tes-

tOptimizer is particularly useful when repeating test set refactoring tasks. The time

savings accumulate during a project and ¯nally result in savings su±ciently signif-

icant to justify employing the proposed solution.

3.3. Discussion

Because the TestOptimizer is designed to respect the speci¯c context of FE auto-

mated test scripts, its results when searching for the potential common subroutines

are better than approaches that use common universal tools to search for these

subroutines. When we compared the TestOptimizer results with a manual analysis,

signi¯cant time savings were achieved. Nevertheless, TestOptimizer has some lim-

itations and there are some threats to the validity of the experimental results. We

start with the limitations of the TestOptimizer solution.

The system's e±ciency in detecting potential common subsequences can vary

across di®erent sets of automated test scripts. To obtain objective results, we used

real automated test scripts from ¯ve selected projects in our experiments. Generally,

TestOptimizer performs best for:

(i) Larger test automation projects (in which there are larger sets of automated test

scripts);

(ii) Recorded automated tests or automated tests programmed in a non-structured,

naive style;

(iii) Automated tests that have been planned to run repeatedly over long time spans

and where (due to potential maintenance overhead) better structuring is

needed; and

(iv) Whenever a need for repeated refactoring of the set of automated tests exists.

The test automation code that can be analyzed and converted to signatures depends

on the con¯guration of the Converter module. This limits TestOptimizer to test au-

tomation frameworks and languages for which a respective Converter is implemented.

On the other hand, this approach gives TestOptimizer the °exibility to be applied on

various types of FE based automated tests by creating a suitable Converter.

The processing times limit the solution to batch processing: a set of automated

test scripts are sent to TestOptimizer server, the analysis is performed as a batch job,

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 29

122

and the user asks TestOptimizer server whether the results are ready to download.

For the analyzed test sets in our experiments, the run times extend up to 30min. For

this reason, TestOptimizer is not suitable for real-time analysis of test automation

code in the current prototype. Nevertheless, as we discussed with several test au-

tomation developers, batch processing is suitable for the intended use case. Real-time

processing was discussed as \nice-to-have" feature, but not as a necessity.

3.4. Threats to validity

Several threats to the validity of the performed experiments can be identi¯ed:

The manual analysis of the true relevance of the identi¯ed potential subroutines

was performed by two expert test-automation-code developers. Because we had a

strong interest in ¯nding the best con¯guration for TestOptimizer, we conducted this

analysis in the most objective way. Despite that, subjective factors could have played

a role. We estimate this factor maximally to 10% of the potential subroutines

identi¯ed as non-relevant.

The real test automation code used in the experiments was been recorded in the

Selenium IDE and exported to Java using the Selenium WebDriver. For di®erent

languages and recording styles, the e±ciency of the solution could be di®erent.

The group of 30 test automation developers used in the evaluation of the solution

e±ciency can be considered su±ciently extensive; nevertheless, 25 of these developers

were junior test automation developers. The task of identifying potentially reusable

subroutines in the test code was appropriate for their expertise level, but it can be

assumed that senior test code developers would be faster at performing this activity.

When we compared the performance of the senior developers with the junior

developers in the group, the senior developers produced more relevant potential

common subroutines in less time (on average by 30%). Nevertheless, the results were

still signi¯cant.

These ¯rst results encourage us to continue with the experiments and evolution of

the TestOptimizer solution. In future validations, we plan to use more sets and

various types of automated test scripts. In addition, to test the e±ciency of the

TestOptimizer compared to a manual refactoring process, we plan to conduct an-

other set of experiments with a group of more senior developers.

4. Related Work

Reduction of potential duplication in test automation code by creating reusable

objects is area that has been investigated from various points of view. On structural

and architectural levels, over the past two decades, several proposals such as [11, 21–23]

have presented frameworks that address reusability issues. In the latest trends, an

object character recognition (OCR) approach is being explored as an alternative

approach to reduce the maintenance requirements of test scripts, for instance [24].

These proposals can be used as inspiration when creating a new test automation

30 M. Bures, M. Filipsky & I. Jelinek

123

framework or scripting architecture. Generally, designing a framework or architec-

ture that directly addresses reusability issues implies an initial e®ort to de¯ne the

proper structure to support reusability. Our aim di®ers in this regard ��� we analyze

simply structured automated test scripts, created mainly by recording or by

descriptive programming in a naive style.

The reusability aspect has also been assessed and discussed for the most estab-

lished test automation platforms such as Test Complete, HP QuickTest pro (now

called MicroFocus Uni¯ed Functional Testing) and Selenium [25, 26]. Despite the

fact that each of these platforms provides an individual level of support for reusable

objects in test scripts, none have implemented a direct solution to reduce duplication

in previously recorded test scripts.

A related relevant question is how to estimate the reusability of test components

for automated testing. This question inspired Kaner [5] who proposed a method

based on the \return on investment" model to estimate the minimum reusability of

an automated test component and inspired Kan [27] to propose a method for esti-

mating the potential reusability of test automation components. Finally, it inspired

us [28] to propose a model of test automation architecture in which the potential

reusability of code is estimated during the design phase. TestOptimizer can be also

indirectly used to estimate the potential reusability ratio in analyzed test automation

code, nevertheless that is not the primary use case of the solution.

Generally, identi¯cation of repetitive code is covered much more intensely at the

unit test refactoring level [29–32] than on the automated test level based on SUT

FEs. At the unit test refactoring level, we can ¯nd individual reports and case

studies, for instance [33].

It is worth mentioning that on general level, redundancy of the test code can be

also potentially decreased by keeping and maintaining of the SUT model and gen-

eration of up-to-date test cases, which is intensely investigated area. As a few

examples, we can give [34–37]. Also these approaches do not address the use case of

the presented TestOptimizer solution.

In the area of processing recorded automated test scripts, little work exists.

Among recent works, the BlackHorse project [14] is de¯nitively relevant to our

proposal. The goal of the BlackHorse project is similar: to record tests and then

reduce their brittleness. Nevertheless, there are several major di®erences in the

BlackHorse project compared to the approach used in TestOptimizer regarding both

implementation and in the general intended use case. BlackHorse uses a proprietary

recording tool to capture test traces; then, the test traces are converted to Java code

to minimize the e®ects of changes in the SUT FE and obtain more stable scripts. In

contrast, TestOptimizer analyzes already created test scripts and identi¯es potential

common subroutines, but only makes suggestions to the developers, and it is more

platform independent. By developing a suitable Converter module, TestOptimizer

can be used to analyze automated test scripts in a speci¯c language or test auto-

mation APIs.

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 31

124

The test-trace concept used in BlackHorse is conceptually similar to the signature

concept used in TestOptimizer; nevertheless, the aims and implementations of these

two concepts di®er. BlackHorse uses the test trace output from test script recordings

as input to produce the ¯nal Java test script code, while TestOptimizer uses the

signatures to identify potential common test steps from a business logic viewpoint,

abstracting the results from any particular source code notation. Because of these

signi¯cant use case di®erences, we decided not to compare TestOptimizer with

BlackHorse.

An alternative approach to increase the reliability of automated test sets was

presented in [38]. Based on an analysis of a SUT FE, the method determines whether

the result of an automated test should be inspected manually by a human tester.

In this method, a previous baseline version of the SUT FE is compared with a new

version, and the di®erences found are used in the analysis.

Another area conceptually similar to TestOptimizer use case is source code

refactoring. Here, a number of previous solutions exist; for example, [39–41]. Code

refactoring tools are designed to work with general source code and they do not

re°ect the speci¯cs of automated test scripts, where two di®erent fragments of test

script source code can perform practically the same action in a SUT FE. Neverthe-

less, this type of tool is comparable to the functionality of TestOptimizer. From the

commonly available solutions, we used the copy-paste-detector (CPD) [42] for

comparison with TestOptimizer in the presented experiments. CPD is part of the

PMD Eclipse plugin project [20] distribution and uses the Karp–Rabin algorithm for

string matching.

Regarding the algorithms used, for searching for common subsequences in two

strings, the relevant initial algorithms were published some 40 years ago. For in-

stance, an algorithm that solves the problem in quadratic time and linear space was

presented by [43, 44]. In our problem, we search for common subroutines in larger

sets of strings, which is principally an NP-complete problem [45] in which genetic

algorithms obtain satisfactory results [15, 17]. Inspired by this report, we used the

genetic algorithm for the LCS problem in the TestOptimizer Solver component.

5. Conclusion

Proposed approach addresses one of the key issues of the SUT front-end test auto-

mation, which is extensive maintenance of recorded or naively structured automated

test scripts. From an economic viewpoint, letting the test engineers to record the

tests decrease the test creation costs, whilst proposed automated identi¯cation of

refactoring opportunities decrease the test optimization costs and as a result the

maintenance costs of the test set.

A novelty of the proposed approach lay in a post-processing method based on

abstraction of the analyzed tests that enables test engineers to identify truly relevant

potential reusable subroutines with more accuracy than the common tools for code

refactoring (PMD for instance). Together with this, the proposed approach does not

32 M. Bures, M. Filipsky & I. Jelinek

125

imply any dependency of the created test automation code on an external library or

framework.

As shown by the experiment results, the proposed TestOptimizer solution has

potential for reducing the maintenance e®ort in projects where large sets of auto-

mated test scripts are recorded that need to be updated manually to improve their

stability from a potential maintenance perspective. Automated suggestion of po-

tential common subroutines can help test automation developers analyze the possible

refactoring opportunities and can save time ¯nding and assessing potentially reus-

able objects in the script code. This time savings is relevant despite the fact that

TestOptimizer's suggestions must be implemented by the developer (100% relevance

is, due to the nature of the problem, practically unreachable). We tracked the

resources required to perform the given tasks during our experiments and concluded

that using TestOptimizer (i) we spared the time required to create a proposal for

reusable test objects and were able to gain time in test development by using script

recording (rather than descriptive programming), (ii) the time required to create

object descriptors remained the same compared to the pure test recording method,

and (iii) we could reduce senior sta® costs of a project because tests can be recorded

by junior developers; the senior sta® are required only to refactor using the Tes-

tOptimizer or to review the refactored code. Because the TestOptimizer system

respects the speci¯c context of FE automated test scripts, it yields more relevant

results compared to PMD (or other common universal tools used to search code for

common subroutines).

In our proposal, we use the signatureLevel concept, which speci¯es the detail of

the performed search for the potential common subroutines. Here, signatureLevel 1,

which speci¯es the actions and elements (but does not re°ect particular testing data)

seems to be the most e±cient level of abstraction.

Regarding the applicability of the solution, in addition to semi-automated opti-

mization of recorded test scripts, this solution can be also applied to scripts created

by descriptive programming in a naive style, when parts of the code with similar

functions are likely to be repeated in the scripts. For more advanced test automation

architectures, the TestOptimizer can work as an auditing mechanism, assessing the

level of redundancy in a particular test code set.

The proposed solution is built upon a scalable architecture organized as a pro-

cessing pipeline; therefore, it °exibly supports extensions and adjustments of the

analysis process. By creating plugins, the solution can be connected to various IDEs

used for test automation (e.g. Eclipse, MicroFocus Uni¯ed Functional Testing, Se-

lenium IDE, and others). By adding appropriate converters, the system can process a

variety of scripting languages and test automation APIs whereas the principles of the

analysis and suggestions remain the same.

TestOptimizer provides only suggestions about potential common subroutines for

the submitted scripts. Therefore, it does not include a library or framework that the

test automation code is dependent on to work.

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 33

126

Currently we are focusing on few areas for future versions of the solution. We are

currently developing a further extension of the abstraction of test scripts to allow

processing of more advanced Java features (such as the lambda functions in Java 8).

Moreover, we have also focused on continuously improving the selection of pro-

spective tests, which promises better results. Another point of improvement is to

optimize the performance optimization of the algorithms used, which could possibly

allow TestOptimizer server to response more promptly to submitted requests.

Acknowledgments

This research is conducted as a part of the project TACR TH02010296 Quality

Assurance System for Internet of Things Technology. The research was supported by

internal grant of CTU in Prague SGS17/097/OHK3/1T/13.

References

1. M. Bures, Automated testing in the Czech Republic: The current situation and issues, in
Proc. 15th Int. Conf. Computer Systems and Technologies, ACM, 2014, pp. 294–301.

2. D. M. Ra¯, K. R. K. Moses, K. Petersen and M. V. Mäntylä, Bene¯ts and limitations of
automated software testing: Systematic literature review and practitioner survey, in 7th
Int. Workshop on Automation of Software Test, Zurich, Switzerland, 2012, pp. 36–42.

3. S. Berner, R. Weber and R. K. Keller, Observations and lessons learned from automated
testing, in Proc. 27th Int. Conf. Software Engineering, ACM, New York, 2005, pp. 571–
579.

4. J. Kasurinen, O. Taipale and K. Smolander, Software test automation in practice:
Empirical observations, in Advances in Software Engineering, 2010.

5. C. Kaner, J. Bach and B. Pettichord, Lessons Learned in Software Testing: A Context-
Driven Approach (Wiley, 2002).

6. M. Dolezel, Images of enterprise test organizations: Factory, center of excellence, or
community? in Proc. 9th Int. Conf. SWQD 2017, Lecture Notes in Business Information
Processing, Vol. 269 (Springer, 2017), pp. 105–116.

7. M. Fewster and D. Graham, Software Test Automation: E®ective Use of Test Execution
Tools (Addison-Wesley Professional, ACM Press Books, 1999).

8. C. Persson and N. Yilmazturk, Establishment of automated regression testing at ABB:
Industrial experience report on `Avoiding the pitfalls', in Proc. 19th IEEE Int. Conf.
Automated Software Engineering, Washington DC, USA, 2004, pp. 112–121.

9. E. Al�egroth and R. Feldt, Industrial application of visual GUI testing: Lessons learned, in
Continuous Software Engineering (Springer, 2014), pp. 127–140.

10. M. Fewster, Common Mistakes in Test Automation, White paper, Groove consultants,
2001. http://www.agileconnection.com/sites/default/¯les/article/¯le/2012/XDD2901
¯lelist¯lename1 0.pdf.

11. D. D. Lonngren, Reducing the cost of test through reuse, in Proc. IEEE Systems Read-
iness Technology Conf., Salt Lake City, USA (IEEE Press, 1998), pp. 48–53.

12. Selenium WebDriver, http://www.seleniumhq.org/projects/webdriver/.
13. Selenese (Selenium IDE project), http://www.seleniumhq.org/docs/02 selenium ide.jsp.

34 M. Bures, M. Filipsky & I. Jelinek

127

14. S. Carino, J. H. Andrews, S. Goulding, P. Arunthavarajah and J. Hertyk, BlackHorse:
Creating smart test cases from brittle recorded tests, Software Quality Journal 22(2)
(2014) 293–310.

15. B. A. Julstrom and B. Hinkemeyer, Starting from scratch: Growing longest common
subsequences with evolution, in Proc. 9th Int. Conf. Parallel Problem Solving from
Nature, LNCS Vol. 4193 (Springer, 2006), pp. 930–938.

16. Grammar for the Java programming language, Oracle, https://docs.oracle.com/javase/
specs/jls/se7/html/jls-18.html.

17. B. Hinkemeyer and B. A. Julstrom, A genetic algorithm for the longest common subse-
quence problem, in Proc. 8th Annual Conf. Genetic and Evolutionary Computation
(ACM, 2006), pp. 609–610.

18. P. E. Black, \Rabin-Karp", in Dictionary of Algorithms and Data Structures, V. Pieterse
and P. E. Black (eds.), 16 November 2009. Available at http://www.nist.gov/dads/
HTML/karpRabin.html.

19. R. A. Wagner and M. J. Fischer, The string-to-string correction problem, J. ACM
21 (1974) 168–173.

20. PMD plug-in for Eclipse project, http://pmd.sourceforge.net/.
21. L. Kawakami, A. Knabben, D. Rechia, D. Bastos, O. Pereira, R. Pereira e Silva and

L. C. V. D. Santos, An object-oriented framework for improving software reuse on au-
tomated testing of mobile phones, in Testing of Software and Communicating Systems,
LNCS Vol. 4581 (Springer, Heidelberg, 2007), pp. 199–211.

22. D. H. Nguyen, P. Strooper and J. G. Süß, Automated functionality testing through GUIs,
in Proc. Thirty-Third Australasian Conf. Computer Science, Vol. 102, Australian
Computer Society, 2010, pp. 153–162.

23. B. Mu, M. Zhan and L. Hu, Design and implementation of GUI automated testing
framework based on XML, in Proc. WRI World Congr. Software Engineering, Vol. 4,
IEEE, 2009, pp. 194–199.

24. E. Alegroth, M. Nass and H. Olsson, JAutomate: A tool for system-and acceptance-test
automation, in IEEE Sixth Int. Conf. Software Testing, Veri¯cation and Validation,
IEEE, 2013, pp. 439–446.

25. M. Kaur and R. Kumari, Comparative study of automated testing tools: TestComplete
and QuickTest Pro, Int. J. Comput. Appl. 24 (2011) 1–7.

26. H. Kaur and G. Gupta, Comparative study of automated testing tools: Selenium, quick
test professional and testcomplete, Int. J. Eng. Res. Appl. 3(5) (2013) 1739–1743.

27. H. Kan et al., A method of minimum reusability estimation for automated software
testing, J. Shanghai Jiaotong Univ. 18 (2013) 360–365.

28. M. Bures, Model for evaluation and cost estimations of the automated testing architec-
ture, in New Contributions in Information Systems and Technologies, Advances in
Intelligent Systems and Computing, Vol. 353 (Springer, 2015), pp. 781–787.

29. G. Meszaros, xUnit Test Patterns: Refactoring Test Code (Pearson Education, 2007).
30. L. Moonen, A. V. D. Bergh and G. Kok, Refactoring test code, CWI, 2001, pp. 92–95.
31. E. M. Guerra and T. F. Clovis, Refactoring test code safely, in Proc. Int. Conf. Software

Engineering Advances, IEEE, 2007, pp. 44.
32. D. Janzen and S. Hossein, Test-driven development: Concepts, taxonomy, and future

direction, Computer 38 (2005) 43–50.
33. C. McMahon, History of a large test automation project using selenium, in Proc. Agile

Conference, IEEE, 2009, pp. 363–368.
34. B. Kumar and K. Singh, Testing uml designs using class, sequence and activity diagrams,

Int. J. Innov. Res. Sci. Technol. 2 (2015) 71–81.

Identi¯cation of Potential Reusable Subroutines in Recorded Automated Test Scripts 35

128

35. T. Yue, S. Ali and L. Briand, Automated transition from use cases to UML state
machines to support state-based testing, in Modelling Foundations and Applications
(Springer, 2011), pp. 115–131.

36. R. Lipka, T. Potuzak, P. Brada, P. Hnetynka and J. Vinarek, A method for semi–automated
generation of test scenarios based on use cases, in 41st Euromicro Conf. Software Engi-
neering and Advanced Applications, IEEE, 2015, pp. 241–244.

37. T. Potuzak and R. Lipka, Interface-based semi-automated generation of scenarios for
simulation testing of software components, in SIMUL, IARIA, 2014, pp. 35–42.

38. K. Dobolyi, E. Soechting andW.Weimer, Automating regression testing using web-based
application similarities, Int. J. Softw. Tools Technol. Transf. 13(2) (2011) 111–129.

39. B. S. Baker, A program for identifying duplicated code, Computing Science and Statistics
(Springer, 1993), pp. 49–49.

40. T. Pessoa, F. B. e Abreu, M. P. Monteiro and S. Bryton, An eclipse plugin to support code
smells detection, in Proc. Conf. INFORUM '2011, Computing Research Repository,
2012.

41. A. Hamid, M. Ilyas, M. Hummayun and A. Navaz, A comparative study on code smell
detection tools, Int. J. Adv. Sci. Technol. 60 (2013) 25–32.

42. CPD copy-paste-detector project, being the part of PMD distribution, http://pmd.
sourceforge.net/pmd-4.3.0/cpd.html.

43. D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences,
Commun. ACM 18 (1975) 341–343.

44. A. V. Aho, J. D. Ullman and D. S. Hirschberg, Bounds on the complexity of the longest
common subsequence problem, J. ACM 23 (1976) 1–12.

45. D. Maier, The complexity of some problems on subsequences and supersequences, J. ACM
25 (1978) 322–336.

36 M. Bures, M. Filipsky & I. Jelinek

129

12 Appendix F: Tapir: Automation Support of Exploratory

Testing Using Model Reconstruction of the System Un-

der Test

[A.6] Miroslav Bures, Karel Frajtak, and Bestoun S. Ahmed. Tapir: Automation Support
of Exploratory Testing Using Model Reconstruction of the System Under Test. Ac-
cepted in IEEE Transactions on Reliability, January 2018. (Q1, IF 2.79). Pre-print
published at arXiv.org, 1802.07983, https://arxiv.org/abs/1802.07983, 22 Feb 2018.

130

1

Tapir: Automation Support of Exploratory Testing
Using Model Reconstruction of the System Under

Test
Miroslav Bures, Karel Frajtak, and Bestoun S. Ahmed

Abstract—For a considerable number of software projects,
the creation of effective test cases is hindered by design doc-
umentation that is either lacking, incomplete or obsolete. The
exploratory testing approach can serve as a sound method in
such situations. However, the efficiency of this testing approach
strongly depends on the method, the documentation of explored
parts of a system, the organization and distribution of work
among individual testers on a team, and the minimization of
potential (very probable) duplicities in performed tests. In this
paper, we present a framework for replacing and automating a
portion of these tasks. A screen-flow-based model of the tested
system is incrementally reconstructed during the exploratory
testing process by tracking testers’ activities. With additional
metadata, the model serves for an automated navigation process
for a tester. Compared with the exploratory testing approach,
which is manually performed in two case studies, the proposed
framework allows the testers to explore a greater extent of
the tested system and enables greater detection of the defects
present in the system. The results show that the time efficiency
of the testing process improved with framework support. This
efficiency can be increased by team-based navigational strategies
that are implemented within the proposed framework, which is
documented by another case study presented in this paper.

Index Terms—Model-Based Testing, Web Applications Testing,
Functional Testing, System Under Test Model, Generation of Test
Cases from Model, Model Reengineering

I. INTRODUCTION

THE contemporary software development market is char-
acterized by the increasing complexity of implemented

systems, a decrease in the time to market, and a demand for
real-time operation of these systems on various mobile devices
[1]. An adequate software system is needed to solve the
quality-related problems that arise from this situation. Model-
Based Testing (MBT) is a suitable method for generating
efficient test cases [2]. For a considerable ratio of the cases, the
direct applicability of the method is hindered by the limited
availability and consistency of the test basis, which is used to
create the model.

M. Bures, Software Testing Intelligent Lab (STILL), Department of
Computer Science, Faculty of Electrical Engineering Czech Technical Uni-
versity, Karlovo nam. 13, 121 35 Praha 2, Czech Republic, (email: bu-
resm3@fel.cvut.cz)

K. Frajtak, Software Testing Intelligent Lab (STILL), Department of
Computer Science, Faculty of Electrical Engineering Czech Technical Uni-
versity, Karlovo nam. 13, 121 35 Praha 2, Czech Republic, (email: fraj-
tak@fel.cvut.cz)

B. Ahmed, Software Testing Intelligent Lab (STILL), Department of
Computer Science, Faculty of Electrical Engineering Czech Technical Uni-
versity, Karlovo nam. 13, 121 35 Praha 2, Czech Republic, (email: al-
beybes@fel.cvut.cz)

To overcome these limitations, we explore possible
crossover between common MBT techniques and the ex-
ploratory testing approach. Exploratory testing is defined as the
simultaneous testing, learning, documentation of the System
Under Test (SUT) and creation of the test cases [3]. The
exploratory testing approach is a logical choice for testing
systems for which a suitable test basis is not available. Even
when the test basis is available, and the test cases are created,
they can be either obsolete or inconsistent and structured at an
excessively high level [4]. Thus, testers employ the exploratory
testing technique as a solution for overcoming these obstacles.

The key factors for the efficiency of exploratory testing are
consistent documentation of the explored path and exercised
test cases [3], [5]. This systematic documentation has the
following features:

1) prevents the duplication of (informal) test scenarios that
are executed by various testers, which prevents a waste
of resources;

2) leads to an exploration of the parts of the SUT that have
not been previously explored and tested;

3) improves the efficiency and accuracy of the defect
reporting process; and

4) improves the transparency and documentation of the
testing process, which is necessary for reporting and
making managerial decisions related to a project.

Regarding the weaknesses of the exploratory testing, several
issues have been observed in previous reports. Particularly, the
low level of structuring of the testing process and a certain ad
hoc factor can prevent efficient management of the exploratory
testing process. These issues may cause problems with the
prioritization of the tests, the selection of suitable tests in the
actual state of the testing process and the repetition of the
exercised tests [3], [6].

Particular SUT exploration strategies are considered impor-
tant in the exploratory testing process [7]. To efficiently con-
duct an exploration strategy, the exercised tests must be manu-
ally recorded and documented, which can generate additional
overhead for the testing team. This overhead can outweigh the
benefits gained by a more efficient SUT exploration strategy.
Thus, an automation of the tasks related to the documentation
of the exercised tests is an option worth exploring.

Teamwork can have a significant role in exploratory test-
ing. The team organization increases the efficiency of the
exploratory testing technique in terms of identified defects
[5], and it may also prevent repetitive tests and test data
combinations. However, these possibilities have only been

ar
X

iv
:1

80
2.

07
98

3v
1

 [
cs

.S
E

]
 2

2
Fe

b
20

18

131

2

explored in a manual version of the exploratory testing process
[5].

These issues represent our motivation for exploring the
possibilities of supporting exploratory testing by a suitable
machine support method.

This paper summarizes a concept of such a machine support.
The paper focuses on SUT exploration strategies and the
generation of high-level test cases from the SUT model. The
model is reengineered during the exploratory testing activities.
The paper presents the Test Analysis SUT Process Information
Reengineering (Tapir) framework, which guides exploratory
testers during their exploration of a SUT. The first objective
of the framework is to enable the testing team members to
explore the SUT more systematically and efficiently than the
manual approach. The second objective of the framework is
to automatically document the explored parts of the SUT and
create high-level test cases, which guide the testers in the
SUT. In this process, the framework continuously builds a
SUT model front-end UI. This model is enriched by numerous
elements that enhance the testing process.

This paper is organized as follows. Section II presents
the principle of the Tapir framework and introduces the
SUT model and its real-time construction process. Section III
explains the process of guiding the exploratory tester in the
SUT based on this model. Section IV describes the setup of
the performed case studies. Section V presents the results of
these case studies. Section VI discusses the presented results.
Section VII discusses threats to the validity of the results,
and Section VIII presents related studies. Finally, Section IX
provides the concluding remarks of the paper.

II. REAL-TIME CONSTRUCTION OF THE SUT MODEL

This section summarizes the functionality of the Tapir
framework and the underlying SUT model.

A. Principles of the Tapir Framework

The aim of the Tapir framework is to improve the efficiency
of exploratory testing by automating the activities related to
the following:

1) records of previous test actions in the SUT,
2) decisions regarding the parts of the SUT that will be

explored in the subsequent test steps, and
3) organization of work for a group of exploratory testers.

The framework tracks a tester’s activity in the browser and
incrementally builds the SUT model based on its User In-
terface (UI). Based on this model, which can be extended
by the tester’s inputs, navigational test cases are generated.
The explored paths in the SUT are recorded for the individual
exploratory testers. The navigational test cases help the testers
explore the SUT more efficiently and systematically, especially
when considering the teamwork of a more extensive testing
group (typically larger than five testers).

Technically, the Tapir framework consists of three principle
parts.

1) Tapir Browser Extension: this extension tracks a
tester’s activity in the SUT and sends the required

information to the Tapir HQ component, and it also
highlights the UI elements of the SUT in a selected
mode (i.e., the elements already analyzed by the Tapir
framework or elements suggested for exploration in the
tester’s next step). The extension also analyzes the SUT
pages during the building of the SUT model. Currently,
implemented for the Chrome browser.

2) Tapir HQ: this part is implemented as a standalone
web application that guides the tester through the SUT,
provides navigational test cases, and enables a Test Lead
to prioritize the pages and links and enter suggested
Equivalence Classes (ECs) for the SUT inputs and
related functionality. This part constructs and maintains
the SUT model. Tapir HQ runs in a separate browser
window or tab, thus serving as a test management tool
that displays the test cases for the SUT.

3) Tapir Analytics: this component enables the visual-
ization of the current state of the SUT model and a
particular state of SUT exploration. This part is also
implemented as a module of Tapir HQ that shares the
SUT model with the Tapir HQ application.

The overall system architecture is depicted in Figure 1.
The Tapir framework defines two principal user roles.

1) Tester: a team member who is guided by the Tapir
framework to explore the parts of the SUT that have not
been previously explored. For each of the testers, a set of
navigational strategies and a test data strategy can be set
by the Test Lead. The navigational strategy determines a
sequence of the SUT functions to be explored during the
tests, which is suggested to the tester by the navigational
test cases. The test data strategy determines the test data
to enter on the SUT forms and similar inputs during the
tests. The test data are also suggested to the testers by
the navigational test cases.

2) Test Lead: senior team member who explores the SUT
before asking the testers to perform detailed tests. In
addition to the tester’s functionalities, the Test Lead has
the following principal functionalities.

a) Prioritization of the pages, links, and UI action
elements of the SUT. During the first exploration,
the Test Lead can determine the priority of the par-
ticular screens and related elements. This priority is
saved as a part of the SUT model and subsequently
employed in the navigational strategies (refer to
Section III-B).

b) Definition of suitable input test data. During the
first exploration, the Test Lead can define ECs for
the individual input fields that are detected on a
particular page. The ECs are saved to the SUT
model and subsequently employed in the process
when generating navigational test cases. After the
ECs are defined for all inputs of the form on the
particular page, the Test Lead can let the Tapir
framework generate the test data combinations us-
ing an external Combinational Interaction Testing
(CIT) module. This module generates a smaller
number of efficient test data combinations based

132

3

Tester's browser with SUT

ConvertorConvertorWeb pages of SUT
front-end user interface

Tapir browser
extension

Tapir HQ Back–End service

Tapir HQ front-end

Tester's browser with Tapir HQ

Tapir Analytics

SUT Model

Tapir HQ backend application

SUT server

System under test

Fig. 1. Overall architecture of the Tapir framework

on a set of inputs on the page and the ECs defined
for these inputs. In this process, a Particle Swarm
Test Generator (PSTG) algorithm [8] is applied.
Additional details are provided in Section IV-A.

The Test Lead can dynamically change the navigational and
test data strategy of particular testers during the testing to
reflect the current state and priorities in the testing process.
These strategies are explained in Sections III-B and III-C. The
role of the Test Lead is not mandatory in the process. The Tapir
framework can be employed by a team of exploratory testers
without defining this role. In this case, functions related to
prioritization and test data definitions are not available to the
team. The framework administrator sets navigational strategies
for team members.

B. SUT Model

For the purpose of systematic navigation by exploratory
testers in the SUT, we evolved the following model during our
work and experiments with the Tapir framework. T denotes
all exploratory testers who are testing the SUT. The set T
includes testers t1...tn. A tester can be given the role of Test
Lead. The SUT is defined as a tuple (W, I,A, L), where W
is a set of SUT pages, I is a set of input elements displayed
to the user on the web pages of the SUT user interface, A is a
set of action elements (typically <form> element submits),
and L is a set of link elements displayed to the user.

A Web Page w ∈W is a tuple (Iw, Aw, Lw,Θw, φw,Mw),
where Iw ⊆ I is a set of input elements, Aw ⊆ A is a set of
action elements and Lw ⊆ L is a set of link elements located
on page w . A Web Page w can contain action elements that
can perform actions with more than one form displayed on the
page. In our notation, Ia ⊆ Iw contains a set of input elements
that are connected to the action elements a ∈ Aw.

On the SUT page w, an input element is a data entry
field (text field, drop-down item, checkbox or another type of
input element defined by the HTML for the forms). An action
element triggers the submission of the form, invokes data
processing in the SUT and transition to the next page wnext.
The action elements are HTML buttons or elements invoking
submit event on the page. The link elements are HTML links,
or elements that invoke a transition to the next page wnext.
Typically, the SUT header or footer menu is captured by the
link elements.

Then, range(i) denotes the particular data range that can
be entered in an input element i ∈ Iw. The range(i) can be
either an interval or a set of discrete values (items of a list of
values for instance). Then, range(Iw) contains these ranges
for the input elements of Iw.

Θw is a set of action transition rules θ : w × range(Iw)×
Aw → wnext, where wnext ∈ W is a SUT web page that is
displayed to a user as a result of exercising the action element
a ∈ Aw with particular input data entered in the input elements
Ia ⊆ Iw.
Φw is a set of action transition rules φ : w × Lw → wnext,

where wnext ∈W is a SUT web page that is displayed to the
user as a result of exercising a link element l ∈ Lw.

Web Pages that are accessible from Web Page w by the
defined transition rules Θw and Φw are denoted as next(w).
M ⊆ W is a set of UI master pages. The Master Page

models repetitive components of the SUT user interface, such
as a page header with a menu or a page footer with a set
of links. The definition of the Master Page is the same as
the definition of a Web Page, and the Master Pages can be
nested (refer to the Web Page definition). Mw ∈ M is a
set of Master Pages of page w, and this set can be empty.
Additionally, w0 ∈W represents the home page (defined page,
from which the exploratory testers start exploring the SUT)

133

4

and we ∈ W represents the standard error page displayed
during fatal system malfunctions (e.g., the exception page in
J2EE applications).

The model of the Web Page and related concepts are
depicted in Figure 2. The blocks with a white background
depict parts of the model that are automatically reengineered
by the Tapir framework during the exploratory testing pro-
cess. Of these parts, the elements specifically related to the
interaction of the tester with the SUT are depicted by the
blocks with a dotted background. The blocks with a blue-gray
background depict metadata entered by the Test Lead during
the exploratory testing process.

As explained in Section II-A, the model is continuously built
during the exploratory testing process. The team of testers T
contribute to this process, and WT denotes the SUT pages
explored by the whole team while Wt denotes SUT pages
explored by the tester t ∈ T . By analogy, LT (AT) denotes
the SUT link (action) elements explored by the whole team
and Lt (At) denotes link (action) elements explored by the
tester t ∈ T .

By principle, a link or action element can be exercised
additional times during the test exploration process because a
page can be repeatedly visited. To capture this fact, visits(w)t,
visits(l)t and visits(a)t denotes the number of visits of page
w, link element l and action element a by tester t, respectively.
Additionally, visits(w)T , visits(l)T and visits(a)T denote
the number of visits of the page w, link element l and action
element a by all testers in the testing team T , respectively.

For each input element i ∈ I , the Test Lead can define a
set of ECs EC(i), which determine the input test data that
shall be entered by the exploratory testers during the tests.
When these ECs are not defined, EC(i) is empty. For each
ec(i) ∈ EC(i), if range(i) is an interval, then ec(i) is a
sub-interval of range(i); and if range(i) is a set of discrete
values, then ec(i) ∈ range(i).

ECs can be dynamically defined during the exploratory
testing process, and certain classes can be removed from the
model while other classes can be added to the model, with⋂
ec(i)∈EC(i) ec(i) = ∅ for each i ∈ I .
In addition, data(i)t (data(i)T) denotes a set of test data

values that are entered to input element i by tester t (by all
testers in testing team T) during the testing process.

A set of test data combinations that are entered by tester
t for the input elements Ia ⊆ Iw connected to the action
element a is denoted as data(Ia)t = {(d1, ... , dn) | d1 ∈
data(i1)t, ... , dn ∈ data(in)t, i1...in ∈ Ia}. A set of test
data combinations that are entered by all testers in testing
team T in the input elements Ia ⊆ Iw connected to the action
element a is denoted as data(Ia)T = {(d1, ... , dn) | d1 ∈
data(i1)T , ... , dn ∈ data(in)T , i1...in ∈ Ia}.

The Test Lead can also set a priority for selected elements
of the SUT model. This priority is denoted as prio(X),
prio(X) ∈ {1...5}, where five is the highest priority. X
denotes particular web page w ∈ W , link element l ∈ L, or
action element a ∈ A.

The presented model is inspired by a web application model
proposed by Deutsch et al. [9]. In our SUT model, significant
changes have been made. We kept and modified the definitions

of SUT and its web page w. In the main tuple that defines the
SUT model, we removed the database and states, and then
we distinguish the system inputs as input I , action A and
link L elements. In the definition of the SUT web page w, we
distinguish the action Aw and link Lw elements. Consequently,
we defined the transitions to the following page according to
the action transition rule sets Θw and Φw. The home page w0

is taken from the original model. We also applied a concept
of the error page we; however, we define it differently.

The remaining elements of the model (master pages, team of
testers, visits of particular SUT pages and their elements, ECs,
test data combinations and element priorities) are completely
different and were defined by new elements, and they capture
specific features of the exploratory testing problem.

III. GENERATION OF NAVIGATIONAL TEST CASES FROM
THE MODEL

As previously explained, the Tapir framework generates
high-level navigational test cases that are aimed at guiding
a group of exploratory testers through the SUT. The primary
purpose of these test cases is to guide the tester in the SUT.
The test cases are dynamically created from the SUT model
during the exploratory testing process.

A. Structure of the Navigational Test Case

The navigational test cases are dynamically constructed
from the SUT model for an individual tester t ∈ T during
the exploratory testing process. The navigational test case is
constructed for the actual page w ∈ W visited in the SUT
and helps the tester determine the next step in the exploratory
testing process. The structure of the navigational test case is
described as follows.

1) Actual page w ∈W visited in the SUT.
2) Lw (list of all link elements that lead to other SUT pages

that are accessible from the actual page). In this list, the
following information is given:

a) Lw ∩ Lt (links elements that lead to other SUT
pages that are accessible from the actual page
previously visited by the particular tester t),

b) visits(l)t for each l ∈ Lw ∩ Lt,
c) Lw ∩ LT (links elements that lead to other SUT

pages that are accessible from the actual page
previously visited by all testers in team T),

d) visits(l)T for each l ∈ Lw ∩ LT , and
e) prio(l) and prio(wl)for each l ∈ Lw. Link l leads

from the actual page w to the page wl.
3) Aw (list of all action elements that lead to other SUT

pages that are accessible from the actual page). In this
list, the following information is given:

a) Aw ∩ At (action elements that lead to other SUT
pages that are accessible from the actual page
previously visited by the particular tester t),

b) visits(a)t for each a ∈ Aw ∩At,
c) Aw ∩AT (action elements that lead to other SUT

pages that are accessible from the actual page
previously visited by all testers in the team T),

134

5

web page w1

links Lw1

master page mi

inputs Iw1

actions Aw1

prio(w1)

input i1

EC(i1)...

web page wi

master page mj

master pages Mw1

link
transition
rules
)w1

link l1 prio(l1)

...

action a1

...

prio(a1) web page wj

action
transition
rules
4w1

range(i1)

data(i1)

visits(l1)

visits(w1)

visits(a1)

Fig. 2. Model of SUT Web Page and related concepts

d) visits(a)T for each a ∈ Aw ∩AT , and
e) prio(a) for each a ∈ Aw.

4) Five elements are suggested for exploration in subse-
quent test steps for each of the navigational strategies
assigned to tester t by the Test Lead. These elements
are sorted by their ranking, which is calculated by the
respective navigational strategies. This ranking gives the
tester the flexibility to choose an alternative element if he
considers the suggested option to be unsuitable. Because
a particular tester can have additional navigational strate-
gies available, these suggestions are displayed for each
of the assigned navigational strategies in a separate list,
and the tester can choose the optimal strategy according
to his personal testing strategy within the navigational
strategies set by the Test Lead. The elements that are
suggested for exploration are described as follows:

a) The link lnext ∈ Lw and page next(w) suggested
for exploration in the next test step, or

b) The action element anext ∈ Aw suggested for
exploration in the next test step.

5) For each a ∈ Aw, if Ia 6= ∅:
a) data(Ia)t,
b) data(Ia)T ,
c) for each i ∈ Ia:

i) ec(i) ∈ EC(i) is suggested based on the test

data strategy (refer to section III-C) set by the
Test Lead, and based on this suggestion, tester
t can select a particular data value from ec(i)
to enter it into the input element i for the actual
test;

ii) data(i)t (all test data previously entered by the
particular tester i to the input element i); and

iii) data(i)T (all test data previously entered by
all testers in the testing team T to the input
element i).

6) Previous test data combinations entered in Ia, which
resulted in the error page we (e.g., a J2EE exception
page) or a standardized error message (typically, a
PHP parsing error message or application specific error
message formatted in a unified standard manner) that
can be recognized by the Tapir framework.

7) Notes for testers, which can be entered by the Test Lead
onto page w, all link elements from Lw and all action
elements Aw. The Test Lead can enter these notes as
simple textfields (the notes are not defined in the model
in Section II-B).

B. Navigational Strategies

To create navigational test cases during the exploratory
testing process, several navigational strategies can be em-

135

6

ployed. These strategies are specified in Table I. A navigational
strategy determines a principal method that can be applied by
a tester to explore the SUT. Most of the navigational strategies
can be adjusted using a particular ranking function as specified
in Table II. The navigational strategies address the guided
exploration of new SUT functions for all testers individually or
as a collaborative work by the testing team. The same process
is enhanced by navigation driven by priorities of the SUT
pages, links and action elements or by regression testing for a
defined historical period. This latter strategy is also applicable
to retests of defect fixes after a new SUT release.

The navigational strategy determines the SUT user interface
elements that are suggested for the SUT page w in the
navigational test case (refer III-A). The input of this process
is the application context (tester t and related metadata) and
actual state of the SUT model that has been specified in sub-
section II-B. By the rules specified in Table I and the ranking
functions specified in Table II, a list of l ∈ Lw and a ∈ Aw ,
which are sorted by these rules and functions, is created.

The ranking function ElementTypeRank is used for both
link elements l ∈ Lw and action elements a ∈ Aw. The
PageComplexityRank is only used for link elements l ∈ Lw.
In the case of action elements, we are not able to determine
the exact SUT page after the process triggered by the action
element a because test data that have been entered can have a
role in determining the page that will be displayed in the next
step (refer to the SUT model in sub-section II-B).

In the ElementTypeRank, action elements are preferred to
link elements because action elements can be expected to
contain additional business logic and data operations of the
SUT to be explored in the tests (typically, submitting the data
by forms on SUT pages).

In the PageComplexityRank ranking function, the con-
stants actionElementsWeight, inputElementsWeight,
and linkElementsWeight determine how strongly the indi-
vidual page action elements, input elements and link elements
are preferred for determining the page wn ∈ next(w). These
elements are suggested for exploration in the tester’s next step
via the use of a link element that leads to wn. An increase of a
particular constant will cause the pages with a higher number
of particular elements to be preferred. These constants can be
dynamically set by the Test Lead during the exploration testing
process.

The constants actionElementsWeight and
linkElementsWeight can be set in the range of 1 to
512. The constant inputElementsWeight can be set in the
range of 0 to 512. The default value of these constants is
256. Without any change, the pages with a higher number of
forms, a higher number of input fields, a higher number of
action elements, and a higher number of link elements are
considered more complex for the testing purposes, and they
are suggested for initial exploration.

In the PriorityAndComplexityRank, the priorities of the
SUT pages set by the Test Lead have the strongest
role in the determination of the suggested next page
for exploration. The constant pagePriorityWeight de-
termines the extent of the role of this prioritization.
Then, the decision is influenced by the number of in-

put fields, the number of action elements, and the number
of link elements. The constants actionElementsWeight,
inputElementsWeight, and linkElementsWeight have
the same meaning and function as in the PageComplexityRank.
The constant pagePriorityWeight can be set in the range of
0 to 512 and its default value is 256. In Tapir HQ component,
the Test Lead is provided with a guideline for setting the con-
stants actionElementsWeight, inputElementsWeight,
linkElementsWeight and pagePriorityWeight and the
influence of a particular setting.

C. Test Data Strategies

During the construction of the navigational test cases, test
data are suggested for the input elements Ia ⊆ Iw connected to
the action elements a ∈ Aw of the particular pagew ∈W . For
this suggestion, (1) test data previously entered by the testers
(data(i)t and data(i)T for each i ∈ Ia) and (2) ECs defined
by the Test Lead (EC(i) for each i ∈ Ia) are employed.

For this process, the test data strategies described in Table
III are available. These test data strategies are specifically
designed for different cases in the testing process, such as
retesting defect fixes, testing regressions or exploring new test
data combinations.

Similar to the case of the navigational strategies, the test
data strategies for independent exploration of the SUT by
individual testers or team collaboration are available, and they
are marked by the postfix “ TEAM” in the name of the test
data strategy.

The test data strategy DATA NEW RANDOM TEAM
aims to minimize the particular duplicated test data
variants entered by multiple testers either by chance or by
an improper work organization during the exploration
of new test data variants. Another case is intended
for testing defect fixes or regression testing, where
DATA REPEAT LAST, DATA REPEAT RANDOM
and DATA REPEAT RANDOM TEAM strategies
are available to reduce a tester’s overhead by
remembering the last entered test data. The team strategy
DATA REPEAT RANDOM TEAM can improve the
efficiency of the process by minimizing particular duplicated
test data variants entered by multiple testers during regression
testing.

The ECs entered by the Test Lead during his pioneering
exploration of the SUT prevent the input of test data that
belong to one EC, which exercises the same SUT behavior
according to the SUT specification.

The possibility of connecting the Tapir framework
to a CIT module (DATA NEW GENERATED and
DATA NEW GENERATED TEAM strategies) makes
the process more controlled and systematic. Only the efficient
set of test data combinations are used by the testers to
exercise the SUT functions.

IV. SETUP OF THE CASE STUDIES

To evaluate the proposed framework, compare its efficiency
with the manually performed exploratory testing process, and
assess the proposed navigational strategies, we conducted three

136

7

TABLE I
NAVIGATIONAL STRATEGIES

Navigational strategy Rules for element suggestion for page w and tester t.
Elementε can be link element l ∈ Lw or action element a ∈ Aw .

Ranking functions (see Table II)
used

Use case

RANK NEW ε satisfying the following conditions:
(1) visits(ε)t = 0, AND

(2) (ε has the highest ElementTypeRank(ε) OR a page
wn ∈ next(w) to which ε leads has the highest

PageComplexityRank(wn)), AND
(3) ε ∈ w ∈W \M are preferred to ε ∈ w ∈M

ElementTypeRank
PageComplexityRank

Exploration of new SUT
functions

RANK NEW TEAM As RANK NEW, (1) modified to:
visits(ε)T has the minimal value among all ε ∈ Lw and ε ∈ Aw .

ElementTypeRank
PageComplexityRank

Exploration of new SUT
functions

RT TIME ε satisfying the following conditions:
(1) visits(ε)t > 0, AND

(2) time elapsed from the last exploration of ε by tester t >
LastT ime constant, AND

(3) ε ∈ w ∈W \M are preferred to ε ∈ w ∈M

- (1) Retesting of defect
fixes, (2) Regression

testing

PRIO NEW ε satisfying the following conditions:
(1) visits(ε)t = 0, AND

(2) prio(ε) has the maximal value among all ε ∈ Lw and ε ∈ Aw ,
AND

(3) if ε is a link element l ∈ Lw , page wn ∈ next(w) has the
highest PriorityAndComplexityRank(wn), AND

(4) ε ∈ w ∈W \M are preferred to ε ∈ w ∈M

PriorityAndComplexityRank Exploration of new SUT
functions by priorities set

by the Test Lead

PRIO NEW TEAM As RANK NEW, (1) modified to:
visits(ε)T has the minimal value among all ε ∈ Lw and ε ∈ Aw .

PriorityAndComplexityRank Exploration of new SUT
functions by priorities set

by the Test Lead

TABLE II
RANKS USED IN NAVIGATIONAL STRATEGIES

Rank Definition
ElementTypeRank(ε) IF ε is link THEN ElementTypeRank(ε) = 1

IF ε is action element THEN ElementTypeRank(ε) = 2
PageComplexityRank(wn) PageComplexityRank(wn) = (((| Iw |· inputElementsWeight

+| Aw |)· actionElementsWeight +| Lw |) · linkElementsWeight
Iw ∈ wn, Aw ∈ wn, Lw ∈ wn

PriorityAndComplexityRank(wn) PriorityAndComplexityRank(wn) = ((((prio(wn)· pagePriorityWeight
+| Iw |)· inputElementsWeight +| Aw |)· actionElementsWeight

+| Lw |) · linkElementsWeight
Iw ∈ wn, Aw ∈ wn, Lw ∈ wn

TABLE III
TEST DATA STRATEGIES

Test data strategy Description Use case
DATA REPEAT LAST For each i ∈ Ia, suggest the value of data(i)t used in the last test made

by tester t on page w.
If data(i)t = ∅, no suggestion is made.

(1) Retesting of defect fixes, (2)
Regression testing

DATA REPEAT RANDOM Suggest a randomly selected test data combination from data(Ia)t.
If data(Ia)t = ∅, no suggestion is made.

Regression testing

DATA REPEAT RANDOM TEAM Suggest a randomly selected test data combination from data(Ia)T .
If data(Ia)T = ∅, no suggestion is made.

Regression testing

DATA NEW RANDOM For each i ∈ Ia:
if EC(i) 6= ∅, suggest a ec(i) ∈ EC(i), such that d /∈ ec(i) for any

d ∈ data(i)t
if EC(i) = ∅, suggest a value d ∈ range(i), such that d /∈ data(i)t

Exploration of new test data
combinations

DATA NEW RANDOM TEAM For each i ∈ Ia:
if EC(i) 6= ∅, suggest a ec(i) ∈ EC(i), such that d /∈ ec(i) for any

d ∈ data(i)T
if EC(i) = ∅, suggest a value d ∈ range(i), such that d /∈ data(i)T

Exploration of new test data
combinations

DATA NEW GENERATED The Tapir engine suggests combination, which was not used previously
by individual tester t. Combination of test data is taken from a pipeline
of test data combinations created by a Combination Interaction Testing

(CIT) module, connected to the framework by the defined interface
(details follow in section IV-A).

Exploration of new test data
combinations

DATA NEW GENERATED TEAM As DATA NEW GENERATED TEAM, modified to: combination,
which was not used previously by any tester of the testing team T

Exploration of new test data
combinations

137

8

case studies. These case studies primarily focus on the process
efficiency of the exploration of new SUT functions, and their
objective is to answer the following research questions.

RQ1: In which aspects the efficiency of the exploratory
testing process is increased by the Tapir framework when com-
pared with its manual performance? What is this difference?

RQ2: Are there any aspects for which the Tapir framework
decreases the efficiency of the exploratory testing process
compared with its manual execution?

RQ3: Which of the proposed navigational strategies and
ranking functions designed for exploration of new parts of
the SUT are the most efficient strategies and functions?

RQ4: How the previous tester’s experience influences de-
fects found in the exploratory testing process supported by
the Tapir framework when compared with its manual perfor-
mance?

Details of the case studies are presented in the following
subsections.

A. Tapir Architecture and Implementation

As mentioned in Section II-A, the Tapir framework consists
of three principal parts: Tapir Browser Extension, Tapir HQ
component, and Tapir Analytics module. A tester interacts
with the SUT in a browser window with an installed extension.
In the second window, the tester interacts with a Tapir HQ
front-end application, which serves as a test management tool.
Here, suggestions for the navigational test cases are presented
to the tester. The Analytics module can be accessed by the
testers, Test Leads, and administrator as a separate application
and enables the visualization of the state of the SUT model.

In this section, we provide additional implementation details
of the functionality of these framework modules.

The Tapir Browser Extension The Tapir Browser Exten-
sion is implemented as a web browser plugin. The extension
analyzes the current page, intercepts the internal browser
events (e.g., page was loaded or redirected, user navigated
back, or authentication is required), and it registers event
handlers for all links and buttons on the page. All events
relevant to the Tapir framework functionality are intercepted
and tracked. The browser extension has a functionality to
highlight SUT page elements in a mode selected by the Test
Lead (elements already analyzed by the Tapir framework or
elements suggested for exploration in the tester’s next step).
Currently, the browser extension is developed for the Chrome
browser to cover the highest market share. The extension
is implemented in JavaScript. Currently, we are working on
a Firefox version of the browser extension, which can be
simplified by browser extension portability 1.

The Tapir HQ represents the core of the framework func-
tionality. This module receives the events from the browser
extensions, constructs the model, constructs the navigational
test cases, and presents them to the tester. Tapir HQ is a client
application that is implemented as a JavaScript single page
application using the ReactJS framework. The server back-
end is implemented in .Net C#. When a tester starts testing

1https://developer.mozilla.org/en-US/Add-ons/WebExtensions/
Porting a Google Chrome extension

the SUT, a socket is opened between the Tapir HQ back-end
service and Tapir HQ front-end application in the browser to
synchronize the data in real time. For this communication, the
SocketIO library is employed. Tapir HQ also contains an open
interface to a CIT module to import preferred test data combi-
nations (when test data strategies DATA NEW GENERATED
and DATA NEW GENERATED TEAM are employed; refer
to Table III). The interface is based on uploading CSV files
of a defined structure or a defined JSON format. The test data
combinations are determined for the input elements Ia ⊆ Iw
connected to the action elements a ∈ Aw of the particular
pagew ∈W . For the action element a ∈ Aw, the inputs to the
CIT module are Ia and EC(i) for each i ∈ Ia. The output
from the CIT module is a set of test data combinations. The
data combination (di1 , ..., din) is a set of values to be entered
in i1...in ∈ Ia. The test data combinations are stored in a
pipeline and suggested to the testers to be entered in Ia during
the tests. In cases in which EC(i) is not defined by the Test
Lead, a random value from range(i) is employed. In this case,
the test data combinations are marked by a special flag. For
the generation of the test data combinations, PSTG (Particle
Swarm Test Generator) algorithm [8] is applied. The process of
generating test data combinations can be run by the Test Lead
or system administrator for Ia when EC(i) for i ∈ Is ⊆ Ia.
are defined. If previous test data combinations are available,
they are overridden by the new set.

To store the SUT model, the MongoDB NoSQL database
is employed. The document-oriented NoSQL database was
selected because of its efficiency for JSON document pro-
cessing. Documents can be directly stored in this database.
The database with the SUT model is shared by both the Tapir
HQ module and Tapir Analytics module. The Tapir HQ back-
end service exposes the API to access the database by the
individual modules. In the current version of the framework,
user authorization is implemented via Google authentication,
which is supported by the Chrome browser.

The Tapir Analytics module enables users to visualize the
current state of the SUT model. The visualization is in the
form of a textual representation or a directed graph and a
particular state of SUT exploration. This part is implemented
as a module of Tapir HQ that shares the SUT model with
the Tapir HQ application. The framework administrator grants
access rights to this module. This part is implemented in .Net
C#. Visualization of the SUT model is implemented in the
ReactJS framework.

Figure 3 depicts a tester’s navigation support in the SUT
via Tapir HQ. The system displays suggested actions to be
explored (sorted by ranking functions) by several navigational
strategies available to the user. Regarding the format of this
article, the view is simplified: test data suggestions and other
details are not visible in this sample.

In Figure 4, a corresponding screenshot from the SUT
is presented. The Tapir Browser Extension highlights the
elements to be explored in the next step and displays the value
of the ranking function for these elements.

Figure 5 depicts a sample of the Test Lead’s administration
of particular SUT page. Prioritization of the SUT pages and
elements can be performed in this function.

138

9

14/11/2017 Navigation

http://localhost:3000/app/MantisBT/dev/navigation 1/2

>

Navigation

refresh

Tapir HQ

Nodes&

Navigationɡ

Sessionsê

Karel Frajták

Chrome Extension

Location /account_page.php

58c40e04506e4b48dc8db935
226

TOTAL

60
VISITED

27%
VISITED

Hints

NeverVisitedByUserHint +ElementTypeRank

Update User button 1600

Switch button 400

Jump button 400

My Account link 400

Preferences link 400

Pro×les link 400

 link 100 /my_view_page.php

 link 100 /issues_rss.php

My View link 100

View Issues link 100

�

�

�

LeastVisitedGloballyHint +ElementTypeRank

Update User button 1600

Switch button 400

Jump button 400

webmaster@example.com link 100

 link 100 /http://www.mantisbt.org/

�

�

�

NeverVisitedByUserHint
+RankByPriorityAndNumberOfElements

Preferences link 35258884

Pro×les link 34079235

View Issues link 33752093

Report Issue link 17891586

 link 10 /my_view_page.php

My View link 10

Update User button 1

Change Log link 0

Switch button -1000000

 link -1000000 /issues_rss.php

�

�

LeastVisitedGloballyHint
+RankByPriorityAndNumberOfElements

Update User button 1

Switch button -1000000

Jump button -1000000

webmaster@example.com link -1000000

 link -1000000 /http://www.mantisbt.org/

�

�

�

controlGroups[0]
links

 /my_view_page.php

controlGroups[1]
forms

 Switch /set_project.php

links

 /issues_rss.php

controlGroups[2]
forms

 Jump /jump_to_bug.php

links

 My View /my_view_page.php

 View Issues /view_all_bug_page.php

 Report Issue /bug_report_page.php

 Change Log /changelog_page.php

Fig. 3. A sample of testers’ navigational support (simplified)

14/11/2017 My Account - MantisBT

file:///C:/Users/Karel/Downloads/rescreenshoty/My%20Account%20-%20MantisBT.html 1/1

Logged in as: administrator (administrator) 2017-11-14 17:21 UTC Project: 3 Switch

My View| View Issues | Report Issue | Change Log | Roadmap | Summary | Manage | My Account | Logout Issue # Jump

Edit Account [My Account] [Preferences] [Manage Columns] [Profiles]

Username administrator

Password

Confirm Password

E-mail root@localhost

Real Name

Access Level administrator

Project Access Level administrator

Assigned Projects

Update User

Copyright © 2000 - 2017 MantisBT Team
webmaster@example.com

9f6cb4dc-23c1-435f-b1c0-0f03c1ac212a

100

400 100

100 100 400 100

400 400

1600

Fig. 4. SUT with the Tapir Browser Extension highlights

139

10

14/11/2017 Tapir HQ

http://localhost:3000/app/MantisBT/dev/nodes/58c40f88506e4b48dc8db94b 1/3

>
Node /account_manage_columns_page.php

Manage Columns

11.03.2017 15:54:00
Karel Frajták created this node with id 58c40f88506e4b48dc8db94b.

reload

Priority: 2

0 1 2 3 4 5

Master page

Master page hierarchy for the node 5828a5cfa038509c180d70bb.

 Change Remove

Controls

Controls extracted from the page.

Page conditions:{"authenticated":true}
Control groups:

 Control Group: controlGroups[0]

Control group de×ned in master page 5828a5cfa038509c180d70bb:controlGroups[0]

Link:

Priority: 0

0 1 2 3 4 5

local:
location: /my_view_page.php
selector: html > body > div > a

 Control Group: controlGroups[1]

Control group de×ned in master page 5828a5cfa038509c180d70bb:controlGroups[1]

Link:

Priority: 0

0 1 2 3 4 5

 Ignore query string

local:
location: /issues_rss.php
query: username=administrator&key=582eb3a9b422d1925c96daa2d4f86f6c&project_id=1
selector: html > body > table.hide > tbody > tr > td.login-info-right > a

 Form: /set_project.php

Priority: 0

0 1 2 3 4 5

action: /set_project.php
method: post
selector: html > body > table.hide > tbody > tr > td.login-info-right > form

Action Elements
Switch (submit)

Input Elements

project_id (select-one)

 Control Group: controlGroups[2]

Control group de×ned in master page 5828a5cfa038509c180d70bb:controlGroups[2]

Link: My View

Priority: 0

0 1 2 3 4 5

value: My View
local:
location: /my_view_page.php
selector: html > body > table.width100 > tbody > tr > td.menu > a

Link: View Issues

Priority: 0

0 1 2 3 4 5

value: View Issues
local:
location: /view_all_bug_page.php
selector: html > body > table.width100 > tbody > tr > td.menu > a

Link: Report Issue

Priority: 0

0 1 2 3 4 5

Ƨ

ľ

ľ

ĺ

ľ

ĺ

X

ľ

ĺ

ĺ

ĺ

Tapir HQ

Nodes&

Navigationɡ

Sessionsê

Karel Frajták

Chrome Extension

�

ȵ

� �

ȶ

� ȶ

� ȶ

�

ȶ À

ȶ

ȶ

Fig. 5. A sample of Test Lead’s administration of particular SUT page

Figure 6 depicts a sample from the Analytics module,
which consists of the visualization of SUT pages and possible
transitions between the pages. Because the graph is usually
extensive, it can be arranged by several layouts to obtain
additional user comfort. In the sample, compact visualization
is depicted.

B. Systems Under Test with Injected Defects

In Case Studies 1 and 2, we employed an open-source
MantisBT2 issue tracker as a SUT for the experiments. The
MantisBT is written in PHP and uses a relational database. We
modified the source code of the SUT by inserting 19 artificial
defects. We accompanied the defective code lines by a logging
mechanism for reporting each activation of the defective line
code. The details of the injected defects are illustrated in Table
IV.

In Case Study 3, we used the healthcare information system
Pluto that was developed in a recent software project3. The
Pluto system is employed by hospital departments for a

2https://www.mantisbt.org/
3http://www.lekis.cz/Stranky/Reseni.aspx

complete supply workflow of pharmaceutical products and
medical equipment. The system is one part of a complex
hospital information system. The front-end of the Pluto system
is created using HTML, CSS and the JavaScript framework
Knockout. The back-end of the system is developed in C# and
runs on the .NET platform. In this case, we obtained a history
of real defects that were detected and fixed in the software
from December 2015 to September 2017. As a SUT for the
experiments, we used a code baseline of the system from
August 2015. We analyzed 118 defects that were reported from
December 2015 to September 2017. During the bug fixing and
maintenance phase of the SUT, 72 of the defects were found to
be caused by the regression as a result of implemented change
requests and other bug fixes. During the initial analysis, we
excluded these defects; thus, the final number of defects in the
experiment was 48.

We obtained information about the presence of the defects in
the SUT code. We accompanied the SUT with a .NET Aspect-
based logging mechanism to log the flows calls of the SUT
methods during the tests. Using this mechanism, we were able
to determine and analyze the defects in the code that were
activated by the exercised tests. We automated this analysis

140

11

Authenticated

Management

Configuration management

/manage_config_workflow_page.php

/my_view_page.php

/view_all_bug_page.php

/bug_report_page.php

/changelog_page.php

/summary_page.php Summary

/manage_overview_page.php

/account_page.php

/login_page.php

/lost_pwd_page.php

Lost your password?

/signup_page.php

Signup for a new account

/manage_user_page.php

/manage_user_edit_page.php

administrator

/manage_proj_page.php Name

/manage_proj_edit_page.php

Project1

/manage_tags_page.php

/tag_view_page.php

[Tag Name]

/manage_custom_field_page.php

/manage_custom_field_edit_page.php

{Custom Field Name}

/manage_prof_menu_page.php

/manage_plugin_page.php

/adm_config_report.php

Workflow Transitions

Configuration Report

/adm_permissions_report.php

Permissions Report

/manage_config_work_threshold_page.php

Workflow Thresholds

/manage_config_email_page.php

E-mail Notifications

/manage_config_columns_page.php

Manage Columns
Configuration Report

/account_prof_edit_page.php

Manage Users

Manage Projects

Manage Tags

Manage Custom Fields

Manage Global Profiles

Manage Plugins

Manage Configuration

/plugin.php

Import issues

/manage_proj_subproj_add.php

Proceed

/manage_proj_create_page.php

/manage_user_create_page.php

/manage_custom_field_update.php

Proceed

/account_prefs_page.php

My Account

Preferences

/account_manage_columns_page.php

Manage Columns

/account_prof_menu_page.php

Profiles

/account_prefs_update.php

Proceed

/manage_config_columns_set.php

Proceed

/manage_plugin_uninstall.php

/login_select_proj_page.php

/manage_custom_field_delete.php

/manage_user_create.php

Proceed

/manage_user_reset.php

Proceed

/manage_user_delete.php

/manage_proj_create.php

Proceed

/manage_proj_delete.php

/adm_config_delete.php

/manage_config_work_threshold_set.php

Proceed

/tag_delete.php

/tag_update_page.php

/view_user_page.php

Manage User

Login

Signup for a new account

/account_update.php

Proceed

/bug_report.php

View Issues

/view.php

View Submitted Issue 1

/bug_reminder_page.php

administrator

Jump to Notes

Issue History

/print_bug_page.php

Print

View Issues

Report Issue

Change Log

Summary

Manage

My Account

administrator

Send a reminder

0000001

Print

/bugnote_edit_page.php

/bugnote_delete.php

/manage_custom_field_create.php

Proceed

/bug_actiongroup_page.php

/manage_config_columns_reset.php
Proceed

/manage_user_update.php

Proceed

/main_page.php

Login

Lost your password?

/lost_pwd.php

Proceed

/manage_config_email_set.php

Proceed

/query_store_page.php

/bug_reminder.php

Proceed

/manage_columns_copy.php

/bug_file_add.php

Proceed

/bug_revision_view_page.php

0000008

/bug_update_page.php

0000012

/bug_change_status_page.php

miasneka

Send a reminder

0000012

Print View Revisions

/bug_file_delete.php

Delete

/permalink_page.php

/manage_proj_cat_edit_page.php

View IssuesReport Issue

Change LogSummary

Manage

My Account

Manage Users

Manage Projects

Manage Tags

Manage Custom Fields

Manage Global Profiles

Manage Plugins

Manage Configuration

Import issues

/manage_proj_cat_update.php

View IssuesReport Issue

Change Log

Summary

Manage

My Account

Proceed

/manage_proj_cat_delete.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

/manage_config_workflow_set.php

Proceed

View Issues

Report Issue

Change Log

Summary

Manage

My Account

/query_view_page.php

View Issues

Report Issue
Change LogSummary

Manage

My Account
/query_delete_page.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

/query_delete.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

View Issues

Report Issue

Change Log

Summary

Manage

My Account

/bug_revision_drop.php

View IssuesReport Issue

Change Log

Summary

Manage

My Account

/manage_config_revert.php View Issues

Report Issue
Change Log

Summary

Manage

My Account/signup.php

Proceed

/manage_proj_custom_field_add_existing.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

Proceed

/manage_proj_ver_add.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

Proceed

/manage_proj_ver_edit_page.php

View Issues

Report Issue

Change Log Summary

Manage

My Account

Manage Users

Manage Projects

Manage Tags

Manage Custom Fields

Manage Global Profiles

Manage Plugins

Manage Configuration

Import issues

/manage_proj_ver_update.php

View IssuesReport Issue

Change Log

Summary

Manage

My Account

Proceed

/bug_actiongroup_ext.php

View Issues

Report Issue

Change Log

My Account

0000042

/verify.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

/my_view_page.php/issues_rss.php

My View

View Issues

Report Issue
Change Log

Summary

Manage

My Account

0000091

/manage_custom_field_proj_add.php

View Issues
Report Issue

Change Log

Summary

Manage

My Account

/manage_proj_user_remove.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

/manage_proj_subproj_delete.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

Proceed

/manage_user_proj_delete.php

View Issues

Report Issue

Change Log

Summary

Manage

My Account

/manage_proj_ver_delete.php
View Issues

Report Issue

Change Log
Summary

Manage

My Account

/manage_proj_custom_field_remove.php

View Issues

Report Issue
Change Log

Summary

Manage

My Account

/manage_proj_custom_field_update.php

View Issues

Report Issue
Change LogSummary

Manage

My Account

Proceed

Fig. 6. A sample from Analytics module

by a set of scripts that compare the data of the SUT model
recorded by the Tapir framework with these defect activation
logs.

C. Setup of Case Studies

In Case Study 1, we compared the exploratory testing
process that was manually performed by individual testers
with the exploratory testing process supported by the Tapir
framework presented in this paper. The aim of this case study
is to answer research questions RQ1 and RQ2. In this case
study, we employed the following method.

A group of 54 testers performed exploratory testing in
the SUT. The MantisBT issue tracker and inserted artificial
defects are employed (refer to Table IV). Each of the testers
were allowed to individually act, and they were instructed to
perform an exploratory smoke test and explore the maximal
extent of the SUT. Exit criteria were left for an individual
tester’s consideration.

To evaluate the results of this case study, we applied data
that were available in the SUT model created by the Tapir
framework during the exploratory testing process (for details,
refer to Section V-A). A subjective report by individual testers
was not used in the evaluation. The testers were divided into

141

12

TABLE IV
DEFECTS INJECTED TO THE SYSTEM UNDER TEST

Injected defect ID Type SUT function
synt 1 Syntax error Plugin installation function broken
synt 2 Syntax error Plugin uninstallation function broken
synt 3 Syntax error Import issues from XML function broken
synt 4 Syntax error Adding empty set of users to a project causes system defect of the

SUT
synt 5 Syntax error Setting configuration option with empty value causes system defect

of the SUT
synt 6 Syntax error Config option of float type cannot be created
synt 7 Syntax error Config option with complex type cannot be created
mc 1 Missing code Export to CSV is not implemented
mc 2 Missing code The action “set sticky” in search issues screen is not implemented
mc 3 Missing code Printing of the issue details is not implemented
mc 4 Missing code User cannot be deleted
mc 5 Missing code Bug note cannot be deleted
cc 1 Change in condition Issue configuration option value cannot be set in database
cc 2 Change in condition Issue configuration option value in not loaded properly from database
cc 3 Change in condition Tag with the name ”Tapir” (predefined in the SUT) cannot be deleted
var 1 Wrong set of variable Language in user preferences is always ”English” and cannot be

changed
var 2 Wrong set of variable User defined columns in issue list cannot be copied between projects
var 3 Wrong set of variable When adding new bug note, its status cannot be ”private”
var 4 Wrong set of variable Bug note view status cannot be changed

two groups.

1) A group of 23 testers manually performed the ex-
ploratory testing process. The activity of these testers
was recorded by the Tapir framework tracking extension
and Tapir HQ Back-End service. The Tapir HQ Front-
End application was not available to this group. Thus,
navigational support was not provided to its members.

2) A group of 31 testers disjunctive to the previous group
performed the exploratory testing process with sup-
port provided by the Tapir framework. This group em-
ployed the RANK NEW navigational strategy. Within
this strategy, half of this group is randomly selected
to use PageComplexityRank and the other half of the
group is selected to use ElementTypeRank. Although
DATA NEW RANDOM was employed as the test data
strategy, the Team Lead did not define any ECs. The
testers in this group were explicitly instructed to not
use the test data suggestions made by the framework,
and their task was to determine which test data to
actively enter. The purpose of this task was to equalize
the conditions of both groups (the group that manu-
ally performs the exploratory testing has no support
regarding the test data). No priorities were set for the
SUT pages and its elements. The Test Lead did not
change any setup during the experiments. The values of
the actionElementsWeight, inputElementsWeight,
and linkElementsWeight constants were set to the
default value 256.

The participants were differing in praxis in software test-
ing from 0.5 to 4 years. The participants were randomly
distributed in the groups. In this case study, we have not
employed the team variants of the provided navigational
strategies (RANK NEW TEAM). In an objective experiment,
equivalent team support must be provided for cases in which
exploratory testing is manually performed. We have attempted

to perform this initial experiment, and an equivalent simulation
of the Tapir framework functionality by a human team leader
was difficult to achieve. Thus, we evaluate the team versions
of the navigational strategies in Case Study 2.

In Case Study 2, we focused on answering the research
question RQ3.With an independent group of testers, we com-
pared the proposed navigational strategies that primarily fo-
cused on exploring new SUT functions. In this study, a group
of 48 testers performed exploratory testing in the MantisBT
issue tracker with inserted artificial defects (refer to Table IV).
All testers used the support of the Tapir framework. The testers
were instructed to explore the maximal extent of the SUT. This
group was split into four subgroups as specified in Table V.

The participants were differing in praxis in software testing
from 0.5 to 4 years. The participants were randomly distributed
in the groups. In this case study, ECs were not defined by
the Team Lead. In addition, the testers in this group were
explicitly instructed to ignore the test data suggestions made
by the framework, and their task was to determine which test
data to actively enter. No priorities were set for the SUT
pages and its elements. The Test Lead did not change any
of the setup parameters during the experiment. The values of
the actionElementsWeight, inputElementsWeight, and
linkElementsWeight constants were set to the default value
256.

Regarding the strategies that employ prioritization of the
page elements and pages (particularly, PRIO NEW and
PRIO NEW TEAM), this concept adds extra opportunities to
improve the efficiency of the exploratory testing process. A
comparable alternative for the proposed navigational strategies
is not available at this developmental stage of the Tapir
framework. When equivalent prioritization is performed in the
manual exploratory testing process, we expect the same in-
crease in testing process efficiency. For these reasons, we have
decided to exclude the evaluation of the navigational strategies

142

13

TABLE V
PARTICIPANT GROUPS PERFORMING THE CASE STUDY 2

Group ID Number of participants Navigational strategy Ranking function Test data strategy
1 13 RANK NEW TEAM ElementTypeRank DATA NEW RANDOM TEAM
2 11 RANK NEW ElementTypeRank DATA NEW RANDOM
3 12 RANK NEW TEAM PageComplexityRank DATA NEW RANDOM TEAM
4 12 RANK NEW PageComplexityRank DATA NEW RANDOM

PRIO NEW and PRIO NEW TEAM from the described case
study.

Regarding the test data strategies, each of the indi-
vidual strategies is practically designed for different use
cases (refer to Table III). A comparison can be per-
formed between the strategies designed for an individ-
ual tester’s guidance and the strategies designed for
team exploratory testing, e.g., DATA NEW RANDOM ver-
sus DATA NEW RANDOM TEAM. Because the presented
case study primarily focuses on the efficiency of pro-
cess exploration for the new SUT functions, a com-
parison of the strategies DATA NEW RANDOM and
DATA NEW RANDOM TEAM was included in Case Study
2.

In Case Study 3, we compared the exploratory testing
process that was manually performed by individual testers
with the exploratory testing process supported by the Tapir
framework. In this case study, another SUT with real software
defects was employed (refer to SectionIV-B). This case study
aims to answer research questions RQ1, RQ2 and RQ4. The
organization of the experiment is described as follows.

A group of 20 testers performed exploratory testing in
the Pluto system, with each tester acting individually. The
instructions to perform an exploratory smoke test and explore
the maximal extent of the SUT were the same instructions
provided in Case Study 1. Exit criteria were left for an
individual tester’s consideration.

A group of ten testers performed the manual exploratory
testing process, and their activities were recorded by the
Tapir framework. Navigational support of the Tapir HQ was
not provided to these testers. Another group of ten testers
employed the Tapir framework support. RANK NEW was
used as a navigational strategy. In this group, one randomly
selected half of the testers used PageComplexityRank, whereas
the other half of the testers used ElementTypeRank. Regarding
the testing data, we selected the same setup as in Case
Study 1 to ensure that the conditions of both groups were
as equal as possible. Although DATA NEW RANDOM was
utilized, ECs were not defined by the Test Lead, and the
testers were instructed to define their individual testing data
(test data suggestions of the Tapir framework were not em-
ployed). Element priorities were not applied, and the values of
the actionElementsWeight, inputElementsWeight, and
linkElementsWeight constants were set to the default value
256. For objectivity reasons, no team variant of a navigational
strategy was utilized (this experiment was the subject of Case
Study 2). Experience of the testers varied from 0.5 years to 3
years. We mixed both groups to have the average experience
of the testers in each of the groups 1.5.

Regarding the experimental groups, we ensured that all
participants had received the equivalent initial training regard-
ing the following software testing techniques: (1) principle
of exploratory testing, (2) identification of boundary values,
(3) equivalence partitioning, (4) testing data combinations to
input in the SUT (condition, decision and condition/decision
coverage, pairwise testing and basics of constraint interaction
testing) and (5) techniques to explore a SUT workflow (process
cycle test).

To evaluate the case studies, we used a set of metrics that
are based on the SUT model and activated defects in the SUT
code. This set of metrics is defined in Table VI.

In the definitions, τ represents the total time spent by
exploratory testing activity, and it was averaged for all testers
in the group and given in seconds. The average time spent
on a page is measured using the Tapir framework logging
mechanism. The average time to activate a defect (time defect)
is calculated as the average total time spent by the exploratory
testing process divided by the number of activated defects.
When a defect is activated, it occurs during the exploratory
testing process. Thus, a tester can notice and report this defect.

V. CASE STUDY RESULTS

In this section, we present and discuss the results of the
performed case studies.

A. The Results of Case Study 1

Table VII summarizes the comparison between the manual
exploratory testing approach and the Tapir framework. The
results are based on the data that we were able to automatically
collect from the recorded SUT model. In this comparison,
the average of the results from the navigational strategy
RANK NEW and ranking functions ElementTypeRank and
PageComplexityRank are provided for the Tapir framework.
DATA NEW RANDOM was utilized as the test data strategy.
DIFF = (AUT −MAN)/AUT is presented as a percentage,
where AUT represents the value measured in the case of the
Tapir framework, and MAN denotes the value measured in
the case of the manual approach. In Table VII, we use the
metrics previously defined in Table VI. In the statistics, we
excluded excessive lengthy steps (tester spent more than 15
minutes on a particular page) caused by leaving the session
open and not testing. In the case of the manual exploratory
testing, these excluded steps represented 1.19% of the total
recorded steps; and in the case of Tapir framework support,
this ratio was 0.72%.

To measure the activated defects, we accompanied the
defective code lines by a logging mechanism and reported
each activation of the defective line code.

143

14

Metric definition Explanation Unit
| T | Number of participants -

pages =
∑
w∈W visits(w)T Total number of explored pages, pages can repeat -

u pages = |W | Total number of explored unique pages -
r pages = |W |∑

w∈W visits(w)T
· 100% Ratio of explored unique pages %

links =
∑
l∈L visits(l)T Total number of link elements explored, elements can repeat -

u links = | L | Total number of explored unique link elements -
r links = |L|∑

l∈L visits(l)T
· 100% Ratio of explored unique link elements %

actions =
∑
a∈A visits(a)T Total number of action elements explored, elements can repeat -

u actions = | A | Total number of explored unique action elements -
r actions = |A|∑

a∈A visits(a)T
· 100% Ratio of explored unique action elements %

time page = τ∑
w∈W visits(w)T

Average time spent on page seconds

time u page = τ
|W | Average time spent on unique page seconds

time link = τ∑
l∈L visits(l)T

Average time spent on link element seconds

time u link = τ
|L| Average time spent on unique link element seconds

time action = τ∑
a∈A visits(a)T

Average time spent on action element seconds

time u action = τ
|A| Average time spent on unique action element seconds

defects Average activated defects logged, activated defects can repeat -
u defects Average unique activated defects logged -

time defect Average time to activate one defect, activated defects can repeat seconds
time u defect Average time to activate one unique defect seconds

TABLE VI
METRICS USED TO EVALUATE CASE STUDIES 1-3

TABLE VII
COMPARISON OF MANUAL EXPLORATORY TESTING APPROACH WITH TAPIR FRAMEWORK: DATA FROM SUT MODEL FOR CASE STUDY 1

Metric Manual approach Tapir framework used DIFF

| T | 23 31 -
pages 151.8 197.9 23.3%

u pages 22.2 37.7 41.0%
r pages 14.6% 19.0% 23.1%

links 64.7 113.2 42.9%
u links 21.4 44.0 51.3%
r links 33.1% 38.9% 14.8%
actions 24.5 59.0 58.5%

u actions 9.6 28.3 66.2%
r actions 39.1% 47.9% 18.5%
time page 21.5 20.1 -6.6%

time u page 146.7 105.7 -38.7%
time link 50.4 35.2 -43.2%

time u link 152.3 90.6 -68.1%
time action 133.1 67.5 -97.3%

time u action 340.7 140.8 -141.9%
defects 11.1 16.6 32.8%

u defects 4.6 6.6 31.1%
time defect 292.8 240.5 -21.7%

time u defect 713.8 601.3 -18.7%

Of the 19 inserted artificial defects, three defects, synt 6,
synt 7 and mc 2, were not activated by any of the testers in
the group supported by the Tapir framework, which yields a
15.8% ratio. In the case of the manually performed exploratory
testing, the defect mc 2 was activated by one tester from the
group.

A comparison was performed between the manual ex-
ploratory testing approach and the exploratory testing ap-
proach supported by the Tapir framework to determine the
efficiency of the potential to detect injected artificial defects in
the SUT, and it is depicted in Figure 7. For particular injected
defects, an average value for the number of times one tester
activated the defect is presented. Value 1 indicates that all
the testers in the group have activated the defect once. For

example, value 0.5 indicates that 50% of the testers in the
group have activated the defect once. The injected artificial
defects are introduced in Table IV.

Figure 8 provides details on the average time spent on a SUT
page by testers using the manual exploratory testing approach
and testers using the Tapir framework support.

Figure 9 provides details on another comparison of the
unique inserted defects that were activated during the activity
of individual testers in both groups.

B. The Results of Case Study 2

Table VIII presents a comparison of different Tapir frame-
work navigational strategies (refer to Table I) based on the
data that were automatically collected from the SUT model. In

144

15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

var_1

var_3

synt_5

var_4

synt_7

synt_6

cc_3

cc_1

cc_2

m
c_1

m
c_5

synt_3

var_2

synt_1

synt_2

synt_4

m
c_3

m
c_2

m
c_4

DEFECTS ACTIVATED IN AVERAGE FOR MANUAL vs. TAPIR

Manual exploratory testing approach Exploratory testing aided by the Tapir framework

av
er

ag
e

nu
m

be
r

of
 d

ef
ec

t
ac

tiv
at

io
ns

 fo
r o

ne
 te

st
er

defect ID

Fig. 7. Potential of manual exploratory testing and Tapir framework approach to detect injected defects in the SUT in Case Study 1

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Manual exploratory testing

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Tapir framework used

participant IDparticipant ID

av
er

ag
e

tim
e

sp
en

t o
n

SU
T

pa
ge

Fig. 8. Average times spent on SUT pages by testers using manual approach and Tapir framework

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Manual exploratory testing

participant ID

un
iq

ue
 a

rt
ifi

cia
l d

ef
ec

ts
 a

ct
iv

at
ed

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Tapir framework used

participant ID

Fig. 9. Unique inserted defects activated by testers using manual approach and Tapir framework

Table VIII, we use the metrics that were previously defined in
Table VI. In this case study, we excluded steps longer than 15
minutes and assumed that such length was caused by leaving
the session open and not testing.

In Group 1, the excluded steps represented 0.54%, 0.87%,
0.49% and 0.76% of the total recorded steps in Groups 2, 3,
and 4, respectively.

The relative differences between the results of the Case
Study 2 groups are presented in Table IX.

C. The Results of Case Study 3

Table X presents a comparison of the manual exploratory
testing approach with the Tapir framework for the experiment
with the Pluto system. Compared with Case Study 1, the
real defects were present in the SUT code in this case

study (refer to Section IV-B). In the Tapir framework, the
RANK NEW navigational strategy with ranking functions
ElementTypeRank and PageComplexityRank were employed.
DATA NEW RANDOM was utilized as the test data strategy.

The data collection method was the same as the data collec-
tion method in Case Study 1, including the meaning of DIFF
in Table X. To evaluate the experiment, the metrics defined in
Table VI are employed. In the statistics, we excluded test steps
longer than 15 minutes on a particular page. We considered
the possibility that the session was opened but testing was not
performed. In the case of the manual exploratory testing, these
excluded steps represented 1.26% of the total recorded steps,
and in the case of Tapir framework support, this ratio was
0.64%.

To measure the activated defects, we logged the flow calls

145

16

TABLE VIII
COMPARISON OF TAPIR NAVIGATIONAL STRATEGIES BASED DATA FROM SUT MODEL

Metric Group 1 Group 2 Group 3 Group 4
Navigational strategy RANK NEW TEAM RANK NEW RANK NEW TEAM RANK NEW

Ranking function ElementTypeRank ElementTypeRank PageComplexityRank PageComplexityRank
Test data strategy DATA NEW

RANDOM TEAM
DATA NEW RANDOM DATA NEW

RANDOM TEAM
DATA NEW

RANDOM
| T | 13 11 12 12
pages 224.0 211.7 233.6 206.2

u pages 47.1 39.0 51.4 42.2
r pages 21.0% 18.4% 22.0% 20.5%

links 131.8 104.2 142.5 118.0
u links 54.4 37.9 58.1 41.1
r links 41.3% 36.4% 40.8% 34.8%
actions 69.3 57.5 75.1 62.7

u actions 34.8 24.6 38.3 29.6
r actions 50.2% 42.8% 51.0% 47.2%
time page 17.8 19.1 19.0 21.4

time u page 84.6 103.6 86.3 104.7
time link 30.2 38.8 31.1 37.4

time u link 73.2 106.6 76.3 107.5
time action 57.5 70.3 59.0 70.4

time u action 114.5 164.3 115.8 149.2
defects 19.7 16.8 20.3 17.3

u defects 8.6 6.9 9.1 7.4
time defect 202.2 240.6 218.4 255.3

time u defect 463.3 585.8 487.2 596.9

of the SUT method during the tests by the added logging
mechanism. Then, we automatically compared these logs with
the recorded SUT model to determine which defects were
activated during certain test steps. In this case study, all defects
were activated by both groups. The average number of defects
activated by both groups are depicted in Figure 10.

In this figure, we depict the average number of times one
tester activated the defect (e.g., the value 0.5 indicates that
50% of the testers in the group has activated the defect once,
and the value 2 indicates that all testers in the group activated
the defect twice).

In Figure 11 we present defect activation data related to
the experience of the testers. In the graphs, individual groups
of columns present the data for individual testers. On the x-
axis, the praxis of the tester in years is captured. In the graph,
we present defects, u defects, time defect and time u defect
values.

VI. DISCUSSION

To evaluate Case Studies 1 and 3, we analyze the data in
Table VII and X. In the case of the MantisBT system, which is
the subject of Case Study 1 (Table VII), we note that using the
Tapir framework causes the testers to explore larger extents of
the SUT compared with the manually performed exploratory
testing. This effect can be observed for the total and unique
SUT pages (values pages and u pages), where Tapir support
leads the testers to explore 23.3% more pages and 41%
additional unique SUT pages. For the total link elements and
unique link elements (links and u links, respectively) and the
total and unique action elements of the pages (actions and
u actions, respectively), the differences in the values are even
higher.

For the Pluto system, which is the subject of Case Study
3 (Table X), the Tapir framework support increased the value
pages by 19.5% and the value u pages by 26.6% as measured
by the relative difference DIFF . The number of the total and
unique link and action elements (values links, u links, actions
and u actions) is higher. This case study confirmed the trend
observed in Case Study 1.

However, individual times spent by the exploratory testing
process differ; thus, the efficiency of the exploratory testing
process aided by the framework must be examined in more
detail to analyze the proper relationships of the data. Three
key indicators are analyzed: (1) the ratio of repetition of the
pages and page elements during the testing process, (2) the
extent of the SUT explored per time unit, and (3) the defect
detection potential.

A. Repetition of the Pages and Page Elements

The ratio of the repetition of the pages and ratio of the
repetition of the page elements during the testing process
(RQ1, RQ2) indicate the extent of possible unnecessary action
in the SUT during the exploratory testing process. In the
collected data, we express this metric as the ratio of the unique
pages or the elements exercised during the tests. We start
analyzing the data of Case Study 1 (MantisBT, Table VII).
For the Tapir framework, the ratio of unique pages explored
in the exploratory testing process (value r pages) is improved
by 4.4% (23.1% in the relative difference DIFF), the ratio
of unique link elements (value r links) is improved by 5.8%
(14.8% in the relative difference DIFF), and the ratio of
unique action elements (value r actions) presents the largest
improvement of 8.8% (18.8% in the relative difference DIFF).
These improvements are significant; however, a more detailed
explanation is needed to discuss the relevance of these metrics.

146

17

TA
B

L
E

IX
R

E
L

A
T

IV
E

D
IF

F
E

R
E

N
C

E
S

B
E

T
W

E
E

N
R

E
S

U
LT

S
O

F
C

A
S

E
S

T
U

D
Y

2
G

R
O

U
P

S

R
el

at
iv

e
di

ff
er

en
ce

fo
rm

ul
a

(α
st

an
ds

fo
r

a
m

et
ri

c
fr

om
Ta

bl
e

V
II

I)

α
G

r
o
u
p
1
−
α

G
r
o
u
p
2

α
G

r
o
u
p
1

·1
0
0
%

α
G

r
o
u
p
3
−
α

G
r
o
u
p
4

α
G

r
o
u
p
4

·1
0
0
%

α
G

r
o
u
p
2
−
α

G
r
o
u
p
4

α
G

r
o
u
p
2

·1
0
0
%

α
G

r
o
u
p
1
−
α

G
r
o
u
p
3

α
G

r
o
u
p
1

·1
0
0
%

M
et

ri
c

/
C

om
m

en
t

R
A

N
K

N
E

W
vs

.
R

A
N

K
N

E
W

T
E

A
M

fo
r

E
le

m
en

tT
yp

eR
an

k

R
A

N
K

N
E

W
vs

.
R

A
N

K
N

E
W

T
E

A
M

fo
r

Pa
ge

C
om

pl
ex

ity
R

an
k

E
le

m
en

tT
yp

eR
an

k
vs

.
Pa

ge
C

om
pl

ex
ity

R
an

k
fo

r
R

A
N

K
N

E
W

E
le

m
en

tT
yp

eR
an

k
vs

.
Pa

ge
C

om
pl

ex
ity

R
an

k
fo

r
R

A
N

K
N

E
W

T
E

A
M

pa
ge

s
5.

5%
11

.7
%

2.
6%

-4
.1

%
u

pa
ge

s
17

.2
%

17
.9

%
-8

.2
%

-8
.4

%
r

pa
ge

s
12

.4
%

7.
0%

-1
1.

1%
-4

.4
%

lin
ks

20
.9

%
17

.2
%

-1
3.

2%
-7

.5
%

u
lin

ks
30

.3
%

29
.3

%
-8

.4
%

-6
.4

%
r

lin
ks

11
.9

%
14

.6
%

4.
2%

1.
2%

ac
tio

ns
17

.0
%

16
.5

%
-9

.0
%

-7
.7

%
u

ac
tio

ns
29

.3
%

22
.7

%
-2

0.
3%

-9
.1

%
r

ac
tio

ns
14

.8
%

7.
4%

-1
0.

3%
-1

.5
%

tim
e

pa
ge

-7
.4

%
-1

2.
9%

-1
2.

2%
-6

.3
%

tim
e

u
pa

ge
-2

2.
5%

-2
1.

3%
-1

.0
%

-1
.9

%
tim

e
lin

k
-2

8.
3%

-2
0.

3%
3.

5%
-2

.8
%

tim
e

u
lin

k
-4

5.
6%

-4
0.

8%
-0

.8
%

-4
.0

%
tim

e
ac

tio
n

-2
2.

3%
-1

9.
3%

-0
.2

%
-2

.6
%

tim
e

u
ac

tio
n

-4
3.

5%
-2

8.
9%

9.
2%

-1
.1

%
de

fe
ct

s
14

.7
%

14
.8

%
-3

.0
%

-3
.0

%
u

de
fe

ct
s

19
.8

%
18

.7
%

-7
.2

%
-5

.5
%

tim
e

de
fe

ct
-1

9.
0%

-1
6.

9%
-6

.1
%

-7
.4

%
tim

e
u

de
fe

ct
-2

6.
5%

-2
2.

5%
-1

.9
%

-4
.9

%

147

18

TABLE X
COMPARISON OF MANUAL EXPLORATORY TESTING APPROACH WITH TAPIR FRAMEWORK: DATA FROM SUT MODEL FOR CASE STUDY 3

Metric Manual approach Tapir framework used DIFF

| T | 10 10 -
pages 98.6 122.5 19.5%

u pages 24.3 33.1 26.6%
r pages 24.6% 27.0% 8.8%

links 39.3 61.5 36.1%
u links 16.1 26.9 40.1%
r links 41.0% 43.7% 6.3%
actions 13.6 25.5 46.7%

u actions 8.2 17.7 53.7%
r actions 60.3% 69.4% 13.1%
time page 23.9 22.3 -7.4%

time u page 97.1 82.5 -17.8%
time link 60.1 44.4 -35.3%

time u link 146.6 101.5 -44.5%
time action 173.5 107.0 -62.1%

time u action 287.8 154.2 -86.6%
defects 34.8 44.1 21.1%

u defects 22,2 28.7 22.6%
time defect 67,8 61.9 -9.6%

time u defect 106.3 95.1 -11.8%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

DEFECTS ACTIVATED IN AVERAGE FOR MANUAL vs. TAPIR

Manual exploratory testing approach Exploratory testing aided by Tapir framework

av
er

ag
e

nu
m

be
r

of
 d

ef
ec

t
ac

tiv
at

io
ns

 fo
r o

ne
 te

st
er

defect ID

Fig. 10. Potential of manual exploratory testing and Tapir framework approach to detect injected defects in the SUT in Case Study 3

0

20

40

60

80

100

120

140

160

180

0.5 0.5 1 1 1 2 2 2 2 3

Manual exploratory testing
defects u_defects time_defect time_u_defect

tester's experience [years]

0

20

40

60

80

100

120

140

160

180

200

0.5 0.5 1 1 1 1 2 2 3 3

Tapir framework used
defects u_defects time_defect time_u_defect

tester's experience [years]

Fig. 11. Defect activations related to experience of the testers (Case Study 3)

148

19

The data indicate that the ratio of unique pages is relatively
low. For example, when exploring the SUT in the manual
exploratory testing process, each page was repeated an average
of 6.83 times to achieve a new page in the SUT. In the
case of the Tapir framework support, this number decreases
to 5.25 because the visited pages in the SUT are repeated
during the testing process. An interesting point is that the
links are frequently repeated during the testing process. For the
manually performed exploratory testing, participants exercised
each link 3.02 times to explore one new unique link transition.
In the case of the Tapir framework support, this ratio decreased
to 2.57. When imagining navigation in the SUT and repetition
of its particular functions with various test data, this finding is
consistent with the total picture. The same case is the repetition
of action elements, in which each action has been repeated
2.56 times in the case of the manual exploratory testing process
and 2.08 times in the case of Tapir support.

In Case Study 3 (Pluto, Table X) , we observe a similar trend
in which the Tapir framework improved the ratio of unique
pages that were explored in the exploratory testing process
(value r pages) by 2.4% (8.8% in the relative difference
DIFF) and the ratio of unique action elements (value r links),
the improvement was 2.8% (6.3% in relative difference DIFF)
in case of Tapir framework support. In case of action ele-
ments (value r actions) by 9.1% (13.1% in relative difference
DIFF).

However, we concluded that the efficiency of the Tapir
framework or exploratory testing process cannot be evalu-
ated solely based on the ratio of unique elements because
exercising the SUT with additional combinations of test data
may decrease these numbers and impact the efficiency of the
testing process. The use of additional test data combinations
(with the SUT elements repaired additional times during the
exploration) can lead to the detection of additional defects.
This outcome strongly depends on the testing goals and
principal types of defects that we want to detect. If the testing
goal is a rapid smoke test of the SUT, the ratio of unique
pages or page elements can be a suitable indicator of process
efficiency. If the testing goal is to detect additional complex
structural defects in the SUT, this metric is not a reliable
indicator of the testing efficiency. Thus, other indicators must
be analyzed and discussed.

B. The Extent of the SUT Explored

The extent of the SUT explored per time unit (RQ1, RQ2)
indicates total time efficiency when exercising the SUT with
exploratory tests. In Case Study 1 (Mantis BT, Table VII), the
average time spent on a page (time page) improves by 6.6% in
the case of Tapir support. This finding can be explained by the
Tapir handling overhead connected to the exploratory testing
process, including the documentation of the path, decision, and
documentation of the test data. Because the SUT pages were
frequently repeated, the significance of this result is not major.
The detailed data in Figure 8 indicate differences among the
individual times spent on a page by the testers. This factor is
strongly influenced by an individual tester’s attitude and work
efficiency.

For the individual time spent on SUT pages, we need to
distinguish two factors that contribute to the total testing time:
(1) overhead related to the exploratory testing process, which
is decreased by the Tapir framework; and (2) time required
to analyze the SUT page and identify and report defects. The
second part is equivalent in both the manual exploratory testing
and aided exploratory testing. In the first factor, the machine
support can reduce the time spent on overhead activities. In
the provided data, both parts are mixed (because distinguishing
these two parts is nearly impossible when collecting data based
on monitoring the events in the SUT user front end).

Because we are interested in exploring the SUT functions
available on pages, we analyze the amount of time is needed
to explore the SUT action element (value time action) or
link (value time link). In the case of action elements, the
time significantly changes by 97.3% in the case of Tapir
support. In the case of links, the difference is also significant
(43.2%). The differences are even more striking in the case
of unique pages (value time u page, difference 38.7% in
favor of the Tapir framework), unique action elements (value
time u action, difference 141.9%), and unique link elements
(value time u link, difference 68.1%).

In Case Study 3 (Pluto system, Table X), the Tapir frame-
work improved the time spent on a page (time page) by
7.4%. However, an analysis of the data related to the link
and action elements (functions available on SUT pages) pro-
vides more relevant results. With the framework support, the
value time action increased by 62.1% and the value time link
increased by 35.3%. Similar to Case Study 1, this improve-
ment is greater in the case of unique action elements (value
time u action, difference 86.6%) and unique link elements
(value time u link, difference 44.5%).

From the presented figures, we can conclude that the Tapir
framework leads to a more efficient exploration of the SUT
functions in relation to the time spent testing. However,
this optimism can diminish when we discuss the possible
various goals of the testing process. For a rapid smoke or
exploratory lightweight testing of the SUT, when the primary
mission statement is to explore the new SUT parts rapidly
and efficiently, Tapir can provide promising support. For more
thorough testing, the validity of these metrics shall be revised
as more thorough tests and more extensive variants of test data
are employed. Thus, the results for this part will be analyzed
based on the efficiency of the defect detection potential.

C. Defect Detection

Defect detection potential (RQ1, RQ2) is an alternative to
the defect detection rate. In this metric, we determine whether
the artificial defect has been activated in the code (which was
ensured by the Tapir framework logging mechanism). When
a tester activates a defect, he is capable of subsequently iden-
tifying and reporting the defect. In Case Study 1 (Mantis BT,
Table VII), we examine the influence of the Tapir framework
on the defect detection potential in the case of inserted artificial
defects.

In the case of Tapir framework support, testers activated a
total of 32.8% more defects when we considered all activated

149

20

defects, including repeating defects (a tester exercised the
same functionality with an inserted defect more frequently)
and 31.1% more defects when we only considered unique
defects. Of the 19 inserted defects, an average of 4.6 unique
defects were detected in the manual execution of exploratory
testing, whereas 6.6 unique defects were detected with Tapir
support. This amount is approximately one-third of all inserted
defects, and this result is attributed to the difficult character-
istics of the inserted artificial defects.

The group that uses the Tapir support exercised the SUT
longer than the group that does not use the Tapir support;
therefore, we are interested in determining the time needed
to activate a defect. With Tapir support, the average time to
activate a defect (regardless of whether the activated defects
repeat) was reduced by 21.7%, whereas for unique defects, the
time was reduced by 18.7%.

The statistics by individual inserted defects are presented
in Figure 7, and the details on the efficiency of individual
participants are provided in Figure 9. We observe differences
among individual testers concerning their efficiency. When
analyzing the data, we do not observe a direct correlation
between time spent on a page and the number of defects that
were detected by individual testers in both groups.

One of the defects, mc 2, was activated by one tester from
the group that only performed the manual testing and by
none of the testers from the group using the Tapir framework
support. This situation deserves an analysis. The defect mc 2
can be activated via the issue list form by the following
sequence: (1) set a combo box value to determine which
operation has to be performed with a selected list of issues to
the “set/unset sticky” value, (2) select additional new issues in
the list (the defect is only activated for issues in “new” state),
and (3) submit the form by the “ok” button. In the combo box
that determines whether an operation has to be performed with
a selected list of issues, fourteen different operations need to
be tested. Thus, the exploration sequence needed to detect the
defect that was not directly captured in the SUT model by
a link or action element. The sequence was a combination of
particular data values entered in the form (input elements) and
an action element. Because of the design of the navigational
strategies and ranking functions in the current version of the
Tapir framework, this defect has “escaped” the exploration
path of the testers. Conversely, one of the manual testers has
attempted the particular combination needed to activate this
defect.

In Case Study 3 (Pluto, Table X), in which real defects
occur in the SUT code, improvements were achieved when the
Tapir framework was utilized by the testers in the experimental
group. With the framework support, a total of 21.1% additional
defects were activated by testers. This value shows the possible
repetitive activation of the same defect during the exploratory
testing process. When only considering the unique defects, the
Tapir framework caused the testers to activate 22.6% additional
defects. Because the group that uses the Tapir framework has
spent a longer testing time, we analyzed the time needed to
activate a defect. The Tapir support improved the average time
to activate one defect by 9.6% (time defect). When we only
consider unique defect activation, this improvement is 11.8%

(time u defect).
In this case study, the defect density was higher; thus, less

time is needed to activate one defect (time defect) and one
unique defect (time u defect). Improvements gained by the
Tapir framework are slightly lower than the improvements
gained in Case Study 1; however, improvements have also
been achieved in the case of the Pluto system.

D. Evaluation of Individual Strategies

In Case Study 2, we compared the efficiency of individual
strategies provided by the framework (RQ3). In our analysis
of the data, we refer to Table IX. We start with a comparison
of the individual testing strategy RANK NEW with the team
strategy RANK NEW TEAM (columns αGroup1−αGroup2

αGroup1
·

100% and αGroup3−αGroup4

αGroup4
· 100%). The results differ by

ranking function (ElementTypeRank vs. PageComplexityRank);
however, general trends are observed in the data. The team
navigational strategy RANK NEW TEAM increased the ratio
of unique explored pages (r pages) by 12.4% for Element-
TypeRank and by 7.0% for PageComplexityRank. In the case
of the ratio of unique link elements (r links), the improvement
is 11.9% for ElementTypeRank and 14.6% for PageCom-
plexityRank. A similar trend is observed for unique action
elements (r actions), where the improvement is 14.8% for
ElementTypeRank and 7.4% for PageComplexityRank, which
is employed as a ranking function.

The statistics related to the time efficiency of the
testing process provide more relevant data. The strategy
RANK NEW TEAM performs well. The average time spent
on a unique page (time u page) decreased by 22.5% for
ElementTypeRank and 21.3% for PageComplexityRank. The
average time spent on a unique link element (time u link)
decreased by 45.6% for ElementTypeRank and 40.8% for
PageComplexityRank. The average time spent on a unique
action element (time u action) decreased by 43.5% for El-
ementTypeRank and 28.9% for PageComplexityRank. These
numbers indicate the favorability of the team strategy.

Regarding the average unique activated defects that were
logged, RANK NEW TEAM increases the result by 19.8%
for ElementTypeRank and 18.7% for PageComplexityRank.
The average time to detect one unique defect decreases by
26.5% in the case of ElementTypeRank and by 22.5% in the
case of PageComplexityRank. These results correspond to the
explored extent of the SUT functions, which is higher in the
case of the RANK NEW TEAM navigational strategy.

From these relative differences, ElementTypeRank performs
better; and in the case of the team version of the navigational
strategy, greater improvements are observed. This conclusion
is not accurate; thus, to assess the efficiency of Element-
TypeRank and PageComplexityRank, we need to independently
analyze the data.

PageComplexityRank leads to the exploration of a slightly
larger extent of the SUT (Table IX). The ratio of unique pages
explored is 11.1% higher for the RANK NEW navigational
strategy and 4.4% higher for the RANK NEW TEAM navi-
gational strategy. The ratio of unique forms explored is 10.3%
higher for the RANK NEW navigational strategy.

150

21

Regarding the average times spent on a SUT page, link
and action elements, the only significant difference is the
average time spent on a page (time page), which is im-
proved by 12.2% for the ElementTypeRank in the case of
the RANK NEW navigational strategy and by 6.3% in the
case of RANK NEW TEAM navigational strategy. PageCom-
plexityRank leads to the exploration of more complex pages,
which requires additional processing time and more time spent
on an SUT page. Because the more complex pages usually
aggregate more unexplored links and action elements, the
extent of the explored SUT parts is higher than the case of
ElementTypeRank as previously discussed.

PageComplexityRank enables the exploration of more action
elements than ElementTypeRank (Table VIII, value u actions)
because of the combination of the navigational strategy al-
gorithm with the PageComplexityRank ranking function. The
Tapir framework mechanism scans the following pages and
prefers the more complex pages (usually containing more
action elements to explore). Note that in page w, the ranking
function ElementTypeRank is calculated for both link elements
l ∈ Lw and action elements a ∈ Aw, whereas the PageCom-
plexityRank is only calculated for link elements l ∈ Lw (refer
to Tables I and II).

PageComplexityRank also slightly increased the average
number of logged unique activated defects by 7.2% for the
RANK NEW strategy and 5.5% for the RANK NEW TEAM
strategy. The difference in the average time to detect these
defects was not significant.

From all analyzed data, the combination of navigational
strategy and ranking function RANK NEW TEAM with
PageComplexityRank presents the most efficient number of
activated inserted defects and the extent of the explored SUT.
However, when considering the time efficiency to explore the
new SUT functions, RANK NEW TEAM with ElementType-
Rank seems to be a better candidate.

E. Influence of Testers Experience

The last issue to discuss is the relation between the expe-
rience of the testers and the activated defects (RQ4). As the
total testing time differed for individual testers, no clear trend
can be observed from defects and u defects values in Figure
11. However, when we analyze average time to activate a
defect (time defect) and average time to activate unique defect
(time u defect), both of there values decrease with tester’s
experience in case of manual exploratory testing. This effect
has been observed previously also in a study by Micallef et
al. [7]. With the Tapir framework support, we can observe
a similar trend, nevertheless, the decrease of time defect and
time u defect values is not so significant as in the case of
manual testing. This is because, for more junior testers (0.5
up to 1 year of experience), the Tapir framework allowed
more efficient exploratory testing and the values time defect
and time u defect are lower. For more senior testers (2 up
to 3 years of experience), the difference in time defect and
time u defect is not significant.

F. Summary

To conclude all three case studies, Case Studies 1 and 3
provided data to answer RQ1 and RQ2. Compared with the
manual approach, the support of the Tapir framework enables
the testers to explore larger extents of the SUT and parts of
the SUT that were previously unreached. This finding is also
documented by the number of SUT pages explored per time
unit, which slightly increases in the case of the SUT pages
in favor of the Tapir framework (6.6% for MantisBT, 7.4%
for Pluto). However, this difference becomes significant when
we consider unique pages (38.7% for MantisBT, 17.8% for
Pluto), total links (43.2% for MantisBT, 35.3% for Pluto),
unique links (68.1% for MantisBT, 44.5% for Pluto), total
action elements (97.3% for MantisBT, 62.1% for Pluto), and
unique action elements (141.9% for MantisBT, 86.6% for
Pluto). However, these figures only documented the ability
of the framework to enable more efficient exploration of new
parts of the SUT by the testers, and a relationship to the in-
tensity of testing is not expressed here. More thorough testing
involves repetition of the SUT parts. Thus, the reliability of
this indicator will be discussed in this case. The measured
defect detection potential also indicates the superiority of the
Tapir framework. With systematic support (and because the
testers were able to explore a larger extent of the SUT), the
testers activated 31.1% additional unique inserted defects in
MantisBT and 22.6% in the Pluto system. Regarding the time
efficiency to detect a defect, in the case of the Tapir framework,
this indicator improved by 18.7% for the unique inserted
defects for MantisBT and 11.8% for the Pluto system. Case
Study 3 differed from Case Study 1 in the defects that were
activated during the experiment. Instead of the artificial defects
used in Case Study 1, the SUT code, which was the subject
of Case Study 3, contained a set of real historical defects.
Improvements achieved by the Tapir framework in Case Study
3 were slightly less than the improvements achieved by the
Tapir framework in Case Study 1. However, improvements can
also be observed in Case Study 3. Regarding RQ2, the analysis
of the results did not indicate a decrease in the efficiency of the
exploratory testing process supported by the Tapir framework.

Regarding the RQ2, no indicator documenting an aspect in
which efficiency of the exploratory testing process supported
by the Tapir framework would decrease was found during the
analysis of the results.

Case Study 2 provided data to answer RQ3. Re-
garding the comparison between the RANK NEW and
RANK NEW TEAM navigational strategies, the team nav-
igational strategy performs better in all measured aspects. For
the ranking function, the PageComplexityRank ratio of unique
explored pages increased by 7.0%, the ratio of unique link
elements increased by 14.6%, and the ratio of unique action
elements increased by 7.4%. The average time spent on a
unique page improved by 21.3%, the average time spent on a
unique link improved by 40.8%, and the average time spent on
unique action elements improved by 28.9%. The total unique
activated defects that were logged improved by 18.7%, and the
average time to detect one unique defect improved by 22.5%.
Separately analyzed, the ranking function ElementTypeRank in

151

22

terms of the extent of explored SUT functions and generates
a slightly higher number of activated unique defects.

The combination of the navigational strategy
RANK NEW TEAM with the ranking functions
ElementTypeRank and PageComplexityRank does not indicate
a preference. RANK NEW TEAM with PageComplexityRank
performed slightly better regarding the extent of explored
SUT and detected defects; conversely, RANK NEW TEAM
with ElementTypeRank was slightly more time efficient.

Regarding the RQ4, average times needed to activate a
defect decreased with tester’s experience in case of manual
exploratory testing and slightly in case of Tapir framework
support. With the Tapir framework support, these times de-
creased significantly for junior testers (0.5 up to 1 year of
experience). For more senior testers (2 up to 3 years of
experience), the improvement in these indicators was not
significant.

VII. THREATS TO VALIDITY

During the case study experiments, we attempted to equalize
the conditions of the compared groups and compare only
comparable alternatives while keeping other conditions fixed
for all participant groups. Several concerns were identified
regarding the validity of the data, which we discuss in this
section.

We previously discussed the relevance of the metrics in
Section VI, which was intended to be objective. For each
of the key metrics, proper disclaimers and possible limiting
conditions are described. In all studies, we employed a defect
activation concept instead of a defect detection concept. Defect
activation expresses the likelihood that the tester will notice
the defect when executed. In Case Studies 1 and 2, the Tapir
framework logging mechanism exactly logged the fact that a
defect was activated. In Case Study 3, we obtained information
about the presence of the defects in the SUT code employed
in the experiment. The SUT code was accompanied by the
logging mechanism, which recorded the flow calls of the SUT
methods during the tests. Then, we performed an automated
analysis of the defects that were activated by the exercised
tests. This analysis ensured the accuracy of the collected data
related to defect activation. In practice, we can expect a lower
real defect reporting ratio because certain activated defects
will not be noticed and reported by the testers. Because this
metric was employed in all comparisons, our opinion is that
it can be used for measuring a trend that is alternative to the
defect detection ratio (which can be biased by individual flaws
in defect reporting by experimental team members). The idle
time of a tester can influence the measured times during a
session (which is a likely scenario when analyzing measured
data; refer to the graph in Figure 8). In the experiments, we
did not have a better option for measuring the time spent
during the testing process. Initially, we experimented with a
subjective tester’s report of time spent by individual testing
tasks; however, this method proved to be less reliable than
the automated collection of time stamps related to the tester’s
actions in the UI, which was employed in the case studies. We
attempted to minimize this problem by excluding excessively

lengthy steps (tester spent more than 15 minutes on a particular
page) caused by leaving the session open and not testing.

We can consider that the influence of these excluded steps is
not significant because the ratio of these steps was lower than
1.26% for the manual exploratory testing for all case studies
and lower than 0.87% for the exploratory testing supported by
the Tapir framework for all case studies.

In Case Study 1, the group that uses the Tapir framework
was larger (31 versus 23 in the group that performed ex-
ploratory testing without support). The size of the group was
sufficiently large to mitigate this risk, and all testers acted
individually. Thus, team synergy did not have a role in this
case study, and all analyzed data were averages for a particular
group.

Previous experience in exploratory testing of the experiment
participants and the natural ability of individuals to efficiently
perform this type of testing can differ among the participants.
In the experimental group, none of the testers were expertly
specialized in exploratory testing, which could favor one of the
groups. Participants of Case Studies 1 and 2 were randomly
distributed to the groups, which should mitigate this issue. In
the Case study 3, we distributed the testers to both groups to
have the average length of praxis in both groups equal 1.5.

Regarding the size of the SUTs (Mantis BT tracker and
Pluto), their workflows and screen-flow model are sufficiently
extensive to draw conclusions regarding all defined research
questions. The employed version of MantisBT consists of
202964 lines of code, 938 application files and 31 underlying
database tables. The utilized version of the Pluto system
consists of 56450 lines of code, 427 application files and 41
underlying database tables.

VIII. RELATED WORK

In this section, we analyze three principal areas relevant to
the presented approach: (1) engineering of the SUT model,
(2) generation of tests from the SUT model and (3) ex-
ploratory testing technique. The first two areas are usually
closely connected in the MBT approach. However, in the Tapir
framework, we reengineer the SUT model based on the SUT
via a continuous process, which represents a difference from
the standard MBT approach.

Current web applications have specific elements that dif-
ferentiate them from any other software application, and
these specific elements significantly affect the testing of these
applications. The contemporary development styles of UI con-
struction are not only HTML based, and the user experience
is dynamically enhanced using JavaScript, which increases the
difficulty of identifying the HTML elements. The dynamic
nature of the UI hinders the correct identification of the UI
elements. Crawlers, which are tools that systematically visit
all pages of a web application, are often employed to rapidly
collect information about the structure, content, and navigation
relationships between pages and actions of the web application
[10], [11]. Although crawlers can rapidly inspect an entire
application, the sequence of steps by a crawl may differ
from the sequence made by a manual tester. Some parts of
the application are not reachable by the crawler. In addition,

152

23

crawlers can address difficulties when user authorization is
required in the SUT.

Several solutions for reengineering the SUT model from the
actual SUT were discussed in the literature. As an example, we
refer to Guitar [12], in which web applications are crawled and
a state machine model is created based on the SUT user inter-
face. A mobile application version of this crawler, MobiGuitar,
has been developed [13]. As an alternative notation to these
state machine models, the Page Flow Graph can be constructed
from the actual web-based SUT [14]. The graph captures the
relationship among the web pages of the application, and the
test cases are generated by traversing this graph (all sequences
of web pages). The PFG is converted into a syntax model,
which consists of rules, and test cases are generated from this
model. The construction of the PFG is not described in this
paper. An extra step is required to convert the PFG to a syntax
model to generate subsequent tests.

Common elements, including UI patterns, are utilized when
developers create the UI of the applications. Examples of this
pattern are Login, Find, and Search. Users with some level of
experience know how to use the UI or how it should be used.
As described by Nabuco et al. [15], generic test strategies can
be defined to test these patterns. Pattern-based model testing
uses the domain specific language PARADIGM to build the
UI test models based on UI patterns and PARADIGM-based
tools to build the test models and generate and execute the
tests. To avoid the test case explosion, the test cases are filtered
based on a specific configuration or are randomly filtered. An
alternative approach is iMPAcT [16], [17], which analyzes
UI patterns in mobile applications. These patterns can be
employed in SUT model reengineering.

Numerous approaches can be employed to generate the
tests from the SUT model. Extensive usage of UML as
the design modeling language implies its use for the MBT
techniques. A survey to improve the understanding of UML-
based testing techniques was conducted by Shirole et al. [18],
who who focused on the usage of behavioral specifications
diagrams, e.g., sequence, collaboration, and state-chart and ac-
tivity diagrams [19]. The research approaches were classified
by the formal specifications, graph theory, heuristics of the
testing process, and direct UML specification processing [18].
Use-case models may represent another source for creating
functional test cases as explored by [20]. In addition to UML,
other modeling languages, such as SysML [21] or IFML [22],
mainstream programming languages, finite machine notations,
and mathematical formalisms, such as coq [23], are utilized.
The SUT user interface is subject to the model-based gen-
eration of test cases, and integration testing is also under
investigation [24].

Open2Test test scripts are automatically generated from
software design documents [25]. These documents are artifacts
of the design process. A design document, design model and
test model for the integration testing tool TesMa [26] are
extended with information on the structure of the web page
(identification of the HTML elements). When the software
specification is changed, the latest scripts are regenerated from
recent test design documents. This approach reduces the cost
of the maintenance of the test scripts. However, the design

documents must be extended with the detailed information
before the test generation process can start.

The code-based API testing tool Randoop4 generates ran-
dom sequences of method calls for a tested class. These
sequences are stored as JUnit test cases. Klammer et al.
[27] have harnessed this tool to generate numerous random
interaction test sequences. The tool cannot interact with the
UI of a tested application; therefore, a reusable set of adapters
that transforms the API calls into UI events was created. The
adapters also set up and tear down the runtime environment
and provide access to the internal state of the SUT. Fraser et al.
[28] have evaluated a test case generation tools called EvoSuite
on a number of Java projects (open source, industrial and
automatically generated projects). The large empirical study
presented in the paper shows that EvoSuite can achieve high
test coverage but not on all types of classes (for example the
file system I/O classes). The interaction with the SUT can be
recorded using a capture & replay tool, or the source code is
analyzed to create a call graph, analyzes the event sequences
and later generate the test cases [29]. The event sequences
describe the executable actions that can be performed by the
user when employing an application (an Android application,
in this case). The actions are converted to JUnit tests classes
that are executed in Robotium, which is a test automation
framework.

The manual version of the exploratory testing technique
has been investigated by several studies, e.g., [3], [4], [7].
The influence of a tester’s experience on the efficiency of the
testing process has been examined [7]. During this experiment,
more experienced testers detect more defects in the SUT.
Teamwork organization in exploratory testing as a potential
method to improve its efficiency was also explored [5]. In
this proposal, team sessions are used to organize the work
of the testers. The Tapir framework also employs the idea of
teamwork, although none of the team sessions are organized.
However, the framework collects information about explored
parts of the SUT and test data and uses this information to
prevent the duplication of tests within a defined team of testers.

Conceptually, combinations of exploratory testing and MBT
can be traced in the related literature; however, the main
use case of these concepts differs from the proposed Tapir
framework. For instance, recordings of performed tests are
used to detect possible inconsistent parts of the SUT design
model [30].

In our approach, we use the web application model that
was created via adopting, modifying, and extending the model
by Deutsch et al. [9]. During our study, the model underwent
significant changes, which we explained in Section II-B. From
the related study, the model conceptually resembles the IFML
standard. In our previous study, we explored the possibility
of using IFML as an underlying model [22]. Specifics of the
presented case enable us to retain the model as defined in this
paper.

4https://randoop.github.io/randoop

153

24

IX. CONCLUSION

To conduct the exploratory testing process in a resource-
efficient manner, the explored path in the SUT shall be
recorded. The entered test data is remembered to fix defects or
perform the regression testing process, and work is distributed
to individual testers in a controlled and organized manner
to prevent duplicate and inefficient tests. This step can be
manually performed; however, this process usually requires
the intensive and permanent attention of a Test Lead. A
considerable amount of time is spent on administrative tasks
related to recording the explored parts of the SUT and other
details of tests. A strong need to communicate the progress
of the team of testers and operationally re-plan the work
assignments could render the exploratory testing technique
more challenging for distributed work teams.

For the more extensive SUT, this organization of work
can become difficult. To visualize the current state of the
exploratory testing, a shared dashboard, which is either an
electronic dashboard or a physical dashboard located in an
office space, where the exploratory testers are located, can
be utilized. In the case of a more extensive SUT, capturing
the state of testing on a physical dashboard can become
problematic, and the maintenance of data in an electronic
dashboard may become a tricky task. To remember the previ-
ously employed test data, shared online tables can be utilized.
However, accessing these tables and maintaining their content
can generate particular overhead for the testers during the
exploratory testing process. Thus, the efficiency gained by a
systematic approach to the test data can be decreased by this
overhead.

The proposed Tapir framework aims to automate the admin-
istrative overhead caused by the necessity to document the path
in the SUT, test data, and related information. The framework
serves to distribute the work in the team of exploratory testers
by automated navigation based on several navigational and
test data strategies. These strategies are designed to explore
new SUT functions that were previously revealed by testing,
retesting after SUT defect fixes and testing regressions. To
prevent duplicate tests and duplicate test data (which is one
of the risks of the manual exploratory testing process), team
versions of the navigational strategies were designed.

To assess the efficiency of the proposed framework, we
conducted three case studies. In these case studies, we used
two systems under testing. The first system was an open-source
MantisBT issue tracker with 19 inserted artificial defects,
and it was accompanied by a logging mechanism to record
the activation of the defects during the exploratory testing
process. The second SUT was the Pluto system developed via
a commercial software industrial project with 48 real software
defects. The SUT code was accompanied by a logging mech-
anism that records the flow calls of the SUT methods during
the tests. This mechanism enabled the automation of exact
analyses to determine the defects that were activated during
the tests.

A comparison of the same process performed by the manual
exploratory testing and the exploratory testing supported by
the Tapir framework focuses on the individual exploration of

the SUT by particular testers, and several significant results
were obtained. The exploratory testing supported by the Tapir
framework enabled the testers to explore more SUT functions
and to explore components of the SUT that were previously
unreached. This effect was also confirmed by the measured
number of SUT pages explored per time unit, which improved
by 6.6% for MantisBT and by 7.4% for the Pluto system in
the case of the Tapir framework. In the case of other elements,
this metric significantly improved. In the case of MantisBT,
the improvement was 38.7% for unique pages, 43.2% for total
links, 68.1% for unique links, 97.3% for total action elements
and 141.9% for unique action elements. In the case of the
Pluto system, the improvement was 17.8% for unique pages,
35.3% for total links, 44.5% for unique links, 62.1% for total
action elements and 86.6% for unique action elements.

However, these metrics document the capability of the
framework to enable testers to efficiently explore new parts
of the SUT, and they are the most relevant in the case of
rapid lightweight exploratory testing, in which a tester’s goal
is to efficiently explore new SUT functions and as many
previously unexplored functions as possible. In the case of
more thorough testing, the relevance of these metrics will be
revised. In principle, SUT pages and elements would repeat
the tests when exercised more frequently by more extensive
input test data combinations. With the support of the Tapir
framework, testers performing exploratory tests of MantisBT
were able to reach and activate 31.1% more unique inserted
artificial defects, and the time needed to activate one unique
defect improved by 18.7%. In the experiment with the Pluto
system, 22.6% additional unique real defects were activated.
Regarding the time needed to activate one unique defect, the
improvement was lower relative to MantisBT at 11.8% but
still significant.

A comparison of navigational strategies and ranking func-
tions clearly documented that team-based navigational strate-
gies are more efficient than individual navigational strategies.
For the PageComplexityRank ranking function employed in
the comparison of the strategies, the ratio of unique explored
pages increased by 7.0% for the team navigational strategy.
In addition, the ratio of unique link elements increased by
14.6%, the ratio of unique action elements increased by 7.4%,
the average time spent on a unique page improved by 21.3%,
the average time spent on a unique link improved by 40.8%,
the average time spent on unique action elements improved
by 28.9%, the total unique activated defects that were logged
improved by 18.7%, and the average time to detect one unique
defect improved by 22.5%.

Regarding the ranking functions, PageComplexityRank per-
formed slightly better than ElementTypeRank in several as-
pects. We are currently conducting additional experiments to
obtain an optimal ranking function. The concept of the Tapir
framework enables this function to be flexibly configured by
setting the calibration constants (refer to II). In our opinion, the
structure of the SUT pages and the complexity of its workflows
have a role in determining the optimal ranking function for a
specific case.

Average times needed to activate a defect decreased with
tester’s experience. This trend was obvious in case of man-

154

25

ual exploratory testing and also present, however, less sig-
nificantly, in case of Tapir framework support. The Tapir
framework support decreased times needed to activate a defect
significantly for testers having 0.5 up to 1 year of experience.
For more senior testers, having 2 up to 3 years of experience,
no clear improvement trend was observed.

The results of the manual exploratory testing process can
be influenced by the Test Lead. Even for a manual process,
a systematic approach can be efficient. Providing systematic
guidance to the testers (including proper documentation of
the explored SUT parts) is a challenging task because this
activity has to be continuously performed during the testing
process. Thus, the proposed Tapir framework can provide
efficient support in eliminating the administrative overhead
and enabling the Test Lead to focus on the analyzing the state,
performing strategic decisions during the testing process and
motivating the testing team. The effect of this support would
be even stronger in the case of extensive SUTs and exploratory
software testing in business domains, with which the testers
do not have familiarity. The results from the presented case
studies documented the viability of the proposed concept and
motivate us to evolve the framework.

ACKNOWLEDGMENTS

This research is conducted as part of the project TACR
TH02010296 Quality Assurance System for Internet of Things
Technology. The research is supported by the internal grant of
CTU in Prague, SGS17/097/OHK3/1T/13.

REFERENCES

[1] C. Ebert and S. Counsell, “Toward software technology 2050,” IEEE
Software, vol. 34, no. 4, pp. 82–88, 2017.

[2] M. Lindvall, D. Ganesan, S. Bjorgvinsson, K. Jonsson, H. S. Logason,
F. Dietrich, and R. E. Wiegand, “Agile metamorphic model-based test-
ing,” in Proceedings of the 1st International Workshop on Metamorphic
Testing, ser. MET ’16. New York, USA: ACM, 2016, pp. 26–32.

[3] D. Pfahl, H. Yin, M. V. Mäntylä, and J. Münch, “How is exploratory
testing used? a state-of-the-practice survey,” in Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. ACM, 2014, p. 5.

[4] C. Ş. Gebizli and H. Sözer, “Impact of education and experience level
on the effectiveness of exploratory testing: An industrial case study,” in
2017 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), March 2017, pp. 23–28.

[5] P. Raappana, S. Saukkoriipi, I. Tervonen, and M. V. Mäntylä, “The effect
of team exploratory testing – experience report from f-secure,” in 2016
IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), April 2016, pp. 295–304.

[6] S. M. A. Shah, C. Gencel, U. S. Alvi, and K. Petersen, “Towards a
hybrid testing process unifying exploratory testing and scripted testing,”
Journal of Software: Evolution and Process, vol. 26, no. 2, pp. 220–250,
2014.

[7] M. Micallef, C. Porter, and A. Borg, “Do exploratory testers need
formal training? an investigation using hci techniques,” in 2016 IEEE
Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), April 2016, pp. 305–314.

[8] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, “Application of particle
swarm optimization to uniform and variable strength covering array
construction,” Applied Soft Computing, vol. 12, no. 4, pp. 1330–1347,
2012.

[9] A. Deutsch, L. Sui, and V. Vianu, “Specification and verification of data-
driven web applications,” Journal of Computer and System Sciences,
vol. 73, no. 3, pp. 442–474, 2007.

[10] H. Tanida, M. R. Prasad, S. P. Rajan, and M. Fujita, Automated System
Testing of Dynamic Web Applications. Berlin, Heidelberg: Springer,
2013, pp. 181–196.

[11] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, WebMate: Generating
Test Cases for Web 2.0. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 55–69.

[12] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,” Automated
Software Engineering, vol. 21, no. 1, pp. 65–105, Mar 2014.

[13] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
Software, IEEE, vol. 32, no. 5, pp. 53–59, 2015.

[14] J. Polpong and S. Kansomkeat, “Syntax-based test case generation
for web application,” in 2015 International Conference on Computer,
Communications, and Control Technology (I4CT), April 2015, pp. 389–
393.

[15] M. Nabuco and A. C. Paiva, “Model-based test case generation for web
applications,” in Proceedings of the 14th International Conference on
Computational Science and Its Applications ICCSA 2014 - Volume 8584.
New York, NY, USA: Springer-Verlag, 2014, pp. 248–262.

[16] I. C. Morgado and A. C. R. Paiva, “The impact tool: Testing ui
patterns on mobile applications,” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Nov 2015, pp.
876–881.

[17] I. C. Morgado and A. C. R. paiva, “Testing approach for mobile
applications through reverse engineering of ui patterns,” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshop (ASEW), Nov 2015, pp. 42–49.

[18] M. Shirole and R. Kumar, “Uml behavioral model based test case
generation: A survey,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 4, pp.
1–13, Jul. 2013.

[19] A. K. Jena, S. K. Swain, and D. P. Mohapatra, “A novel approach for test
case generation from uml activity diagram,” in 2014 International Con-
ference on Issues and Challenges in Intelligent Computing Techniques
(ICICT), Feb 2014, pp. 621–629.

[20] R. Lipka, T. Potuzak, P. Brada, P. Hnetynka, and J. Vinarek, “A method
for semi-automated generation of test scenarios based on use cases,”
in Software Engineering and Advanced Applications (SEAA), 2015 41st
Euromicro Conference on. IEEE, 2015, pp. 241–244.

[21] C. H. Chang, C. W. Lu, W. P. Yang, C. Chu, C. T. Yang, C. T. Tsai,
and P. A. Hsiung, “A sysml based requirement modeling automatic
transformation approach,” in 2014 IEEE 38th International Computer
Software and Applications Conference Workshops, July 2014, pp. 474–
479.

[22] K. Frajtak, M. Bures, and I. Jelinek, “Transformation of ifml schemas to
automated tests,” in Proceedings of the 2015 Conference on Research in
Adaptive and Convergent Systems, ser. RACS. New York, USA: ACM,
2015, pp. 509–511.

[23] Z. Paraskevopoulou, C. Hritcu, M. Denes, L. Lampropoulos, and B. C.
Pierce, Foundational Property-Based Testing. Cham: Springer Interna-
tional Publishing, 2015, pp. 325–343.

[24] T. Potuzak and R. Lipka, “Interface-based semi-automated generation
of scenarios for simulation testing of software components,” in SIMUL.
IARIA, 2014, pp. 35–42.

[25] H. Tanno and X. Zhang, “Test script generation based on design
documents for web application testing,” in 2015 IEEE 39th Annual
Computer Software and Applications Conference, vol. 3, July 2015, pp.
672–673.

[26] H. Tanno, X. Zhang, T. Hoshino, and K. Sen, “Tesma and catg:
Automated test generation tools for models of enterprise applications,”
in Proceedings of the 37th International Conference on Software Engi-
neering - Volume 2, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press,
2015, pp. 717–720.

[27] C. Klammer, R. Ramler, and H. Stummer, “Harnessing automated test
case generators for gui testing in industry,” in 2016 42th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA),
Aug 2016, pp. 227–234.

[28] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test
generation using evosuite,” ACM Trans. Softw. Eng. Methodol., vol. 24,
no. 2, pp. 8:1–8:42, Dec. 2014.

[29] J. L. San Miguel and S. Takada, “Gui and usage model-based test
case generation for android applications with change analysis,” in
Proceedings of the 1st International Workshop on Mobile Development,
ser. Mobile! 2016. New York, USA: ACM, 2016, pp. 43–44.

[30] C. Ş. Gebizli and H. Sözer, “Improving models for model-based testing
based on exploratory testing,” in 2014 IEEE 38th International Com-
puter Software and Applications Conference Workshops, July 2014, pp.
656–661.

155

